
GLOBECOM	2019

Hierarchical	Coding	to	Enable	Scalability	and	
Flexibility	in	Heterogeneous	Cloud	Storage

Siyi Yang1,	Ahmed	Hareedy2,	Robert	Calderbank2,	Lara	Dolecek1
1Electrical	and	Computer	Engineering	Department,	UCLA

2Electrical	and	Computer	Engineering	Department,	Duke	University

12/10/2019



Outline

w Introduction
Ø Latency-reliability	trade-off	in	storage	systems
Ø Heterogeneity,	scalability,	and	flexibility

w Preliminaries
Ø Existing	literature
Ø Cauchy	Reed-Solomon	(CRS)	codes

w Constructions
Ø Double-level	codes
Ø Hierarchical	codes
Ø Properties

w Conclusion	



Outline

w Introduction
Ø Latency-reliability	trade-off	in	storage	systems
Ø Heterogeneity,	scalability,	and	flexibility

w Preliminaries
Ø Existing	literature
Ø Cauchy	Reed-Solomon	(CRS)	codes

w Constructions
Ø Double-level	codes
Ø Hierarchical	codes
Ø Properties

w Conclusion	



Storage	Systems	in	the	Age	of	Big	Data

w Data-intensive	applications	push	forward	the	innovation	of	
storage	systems
Ø IoT devices
Ø In-memory	analytics
Ø Content	delivery	network

1



Storage	Systems	in	the	Age	of	Big	Data

w Data-intensive	applications	push	forward	the	innovation	of	
storage	systems
Ø IoT devices
Ø In-memory	analytics
Ø Content	delivery	network

w Fault-tolerant	storage	systems
Ø RAID,	flash	memory
Ø Cloud	storage
Ø Persistent	memory,	computational	storage

1



Storage	Systems	in	the	Age	of	Big	Data

w Data-intensive	applications	push	forward	the	innovation	of	
storage	systems
Ø IoT devices
Ø In-memory	analytics
Ø Content	delivery	network

w Fault-tolerant	storage	systems
Ø RAID,	flash	memory
Ø Cloud	storage
Ø Persistent	memory,	computational	storage

w Distributed	storage	(we	focus	here	on	cloud	storage)
Ø Low	latency
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w Error-correction	codes	are	applied	for	recovering	the	data
Ø Short	block

● A	single	extra	erasure	results	in	a	failure
● Low	latency

Ø Long	block
● High	reliability
● High	latency

Ø Occurrence	of	a	large	number	of	errors	is	rare

w Codes	with	hierarchical	locality	provides	a	trade-off	between	
high	reliability	and	low	latency	
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Ø Skewed	infrastructure:	networks	typically	consist	of	
geographically	separated	components

Ø Skewed	usage	&	error	rate:	data	stored	in	the	cloud	are	
typically	from	different	sources

w Scalability
Ø Expand	the	backbone	network	to	accommodate	additional	
workload,	without	rebuilding	the	entire	infrastructure

w Flexibility
Ø The	usage	rate	of	a	piece	of	data	is	not	likely	to	remain	
unchanged	in	dynamic	cloud	storage
● Cold	data	become	hot,	hot	data	become	cold
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Ø Allows	non-identical	local	data	lengths	and	unequal	local	
protection

w Scalability
Ø Enables	adding	a	new	local	cloud	without	changing	the	
encoding-decoding	components	(in	the	generator	matrix)	of	the	
already-existing	local	clouds.

w Flexibility
Ø Enables	dynamic	split	of	a	local	cloud	into	smaller	clouds	
without	worsening	the	global	ECC	capability	nor	changing	the	
remaining	components
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Ø Support	a	large	set	of	error	patterns
Ø Distribution	of	the	data	symbols	is	highly	restricted
Ø Local	codewords are	equally	protected

w Extended	integrated	interleaved	(EII)	Codes	[3]

Ø No	hierarchical	solution	is	provided	

w Sum-rank	codes	[4]

Ø Maximal	recoverability and	flexibility
Ø Field	size	exponential	in	the	maximum	codeword length
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Cauchy	Reed-Solomon	(CRS)	Codes

w CRS-based	parity-check	matrix	with	minimum	distance	(t+1)

Ø Cauchy	matrix	of	size	𝑠×𝑡
Ø Negative	identity	matrix	of	size	𝑟×𝑟
Ø Zero	matrix	of	size	𝑟×(𝑡 − 𝑟)
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w Construction	of	hierarchical	codes	based	on	double-level	codes
Ø Local	double-layer	codes

● 𝐈)*,= : 𝑘-,:×𝑘-,:,	𝐀-,-;:,: : 𝑘-,:×𝑟-,:
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w 1st layer	error	correction	capability
Ø 𝑑6,-,: = 𝑟-,: − 𝛿-,: − 2𝛾- +1

w 2nd layer	error	correction	capability
Ø 𝑑9,-,: = 𝑟-,: − 𝛿-,: + 𝛿- + 1
Ø 𝛿- = 𝛿-,6 +⋯+ 𝛿-,<*

w 3rd layer	error	correction	capability
Ø 𝑑H,-,: = 𝑟-,: − 𝛿-,: + 𝛿- − 𝑝-𝛾- + 𝛾 + 1
Ø 𝛾 = 𝑝6𝛾6 +⋯+ 𝑝<J𝛾<J
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w Add	a	cloud	to	the	existing	network
Ø Step	1:	parameter	selection

● Cloud	4	chooses	its	local	parameters
Ø Step	2:	information	exchange

● Uplink
● Downlink

Ø Step	3:	update
● Local	cloud	𝑖 adds	𝐦M𝐁M,:𝐔:
to	its	original	parity

● Local	cloud	4 computes	its
parity	𝐦M𝐀M,M + ∑ 𝐦:𝐁:,M𝐔MH

:P6
Ø Local	parameters	of	other	
clouds	remain	unchanged
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w The	data	of	a	local	cloud	become	hot
Ø Split	the	cloud	into	two	smaller	clouds

● Divide	matrices	𝐆 and	𝐓- into	blocks
● Reorder	the	blocks	and	obtain	new
matrices	𝐓-S, 𝐓-T ,	𝐆

● Other	clouds	remain	unchanged
Ø Erasure	correction	capability

● Old	clouds:	remains	unchanged
● New	clouds:	𝑟-S − 𝛿-S, 𝑟-T − 𝛿-T (𝑟- − 𝛿- in	total)
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Conclusion

w Main	contribution
Ø Proposed	CRS-based	codes	with	hierarchical	locality	
Ø Showed	that	our	construction	achieves	scalability,	
heterogeneity	and	flexibility,	which	are	critical	for	practical	
cloud	storage

Ø Proved	that	our	construction	requires	a	field	size	linear	to	the	
maximum	codeword length

w Future	work
Ø Extend	erasure-correction	to	error-correction,	which	is	useful	in	
novel	SSD	solutions	for	multi-task-oriented	applications,	such	as	
autonomous	driving,	where	latency	and	reliability	are	both	
important
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