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w Invention	of	Blockchain technology	makes	the	concept	of	
“decentralization”	popular
Ø Higher	privacy
Ø Better	scalability	and	flexibility
Ø Economically	attractive

Motivation
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Dynamic	DSNs:	Structures

w DSN:	distributed	local	clouds	
Ø Clusters	of	nodes

● Local	messages	are	encoded	and	stored	distributively among	local	nodes
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w DSN:	distributed	local	clouds	
Ø Clusters	of	nodes

● Local	messages	are	encoded	and	stored	distributively among	local	nodes
Ø A	master	node	at	each	cluster

● Computation	and	inter-cloud	communication

Compound node in 
graphical model
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Dynamic	DSNs:	Practical	Concerns

Failed 
components

Node churn 
(nodes come and leave 
the network randomly)

Data become hot



Desired	Properties:	Reliability	and	Latency
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w Hierarchical	erasure	correction
Ø Each	node	provides	different	levels	of	robustness	for	the	
codeword stored	at	it	through	accessing	different	sets	of	nodes
● Trade-off	between	reliability	and	latency

w Topology-awareness
Ø Schemes	optimized	for	DSNs	with	a	specific	topology	can	result	
in	bad	performance	in	DSNs	with	other	topologies
● Intrinsic	heterogeneity	
● Latency	for	inter-cloud	
communication can	be	much	
higher	than	that	of	
intra-cloud	communication
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Desired	Properties:	Scalability	and	Flexibility

w Scalability	
Ø To	support	node	churn	in	DSN
Ø Expand	the	backbone	network	to	accommodate	additional	
workload	without	rebuilding	the	entire	infrastructure

w Flexibility
Ø To	support	the	dynamic	nature	of	the	usage	rate	of	data	
Ø Split	a	local	cloud	into	smaller	clouds	if	the	data	stored	in	it	
become	hot

Our	goal	is	to	construct	topology-aware	coding	schemes	that	
provide	hierarchical	erasure	correction	at	each	node	and	

simultaneously	support	scalability	and	flexibility



w A	DSN	is	modeled	as	a	graph	𝐺 𝑉, 𝐸
Ø Number	of	master	nodes:	𝑝
Ø Message (codeword)	stored	at	𝑣':		𝐦'(𝐜');	lengths	𝑘'	(𝑛')
Ø Redundancy	of	𝐜':	𝑟' = 𝑛' − 𝑘'
Ø 𝐦 = 𝐦2,𝐦3,⋯ ,𝐦5

Ø 𝐜 = 𝐜2, 𝐜3,⋯ , 𝐜5

Abstract	Model:	Parameters
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Existing	Literature
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w Distributed	storage[1]

Ø No	explicit	consideration	of	clustering	nature	of	network	nodes

w Multi-rack	storage[2-8]
Ø Network	topologies	are	predetermined
Ø Capacities	of	the	communication	links	are	typically	considered	
to	be	the same

[1]	A.	G.	Dimakis et	al.,	“Network	coding	for	distributed	storage	systems”,	IEEE	Trans.	Inf.	Theory,	vol.	56,	no.	9,	pp.	4539-4551,	2010
[2]	Z.	Kong	et	al.,	“Decentralized	coding	algorithms	for	distributed	storage	in	wireless	sensor	networks”,	IEEE	JSAC,	vol.	28,	no.	2,	pp.	261-
267,	2010
[3]	M.	Ye	et	al.,	“Cooperative	repair:	Constructions	of	optimal	MDS	codes	for	all	admissible	parameters”,	IEEE	Trans.	Inf.	Theory,	vol.	65,	no.	
3,	pp.	1639-1656,	2018
[4]	N.	Prakash	et	al.,	“The	storage	versus	repair-bandwidth	trade-off	for	clustered	storage	systems”,	IEEE	Trans.	Inf.	Theory,	vol.	64,	no.	8,	
pp.	5783-5805,	2018
[5]	J.	Li	et	al.,	“Tree-structured	data	regeneration	in	distributed	storage	systems	with	regenerating	codes”,	IEEE	INFOCOM,	2010
[6]	Y.	Wang	et	al.,	“Non-homogeneous	two-rack	model	for	distributed	storage	systems”,	IEEE	INFOCOM,	2014
[7]	H.	Hou et	al.,	“Rack-aware	regenerating	codes	for	data	centers”,	IEEE	Trans.	Inf.	Theory,	2019
[8]	Z.	Chen	et	al.,	“Explicit	constructions	of	MSR	codes	for	clustered	distributed	storage:	the	rack-aware	storage	model”,	[Online].	Available:	
https://arxiv.org/abs/1901.04419,	2019
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ECC	hierarchy	describes	the	erasure	correction	(EC)	capabilities	
of	nodes	while	cooperating	with	different	sets	of	other	nodes
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w Cooperation	at	each	node
Ø ECC	hierarchy	at	𝑣':	𝐝' = 𝑑',8,𝑑',2,⋯ , 𝑑',9:

● ∅ ⊂ 𝒜'
2 ⊂ 𝒜'

3⊂⋯ ⊂ 𝒜'
9:⊆ 𝑉, ℬ'@ 2A@A9: , 𝒜'

2∩ℬ'@ = ∅

● 𝑑',@ 	:	EC	capability	at	𝑣' if	nodes	in	𝒜'
@ ∪ ℬ'@ are	recovered	

ECC	Hierarchy
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ECC	hierarchy	describes	the	erasure	correction	(EC)	capabilities	
of	nodes	while	cooperating	with	different	sets	of	other	nodes
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w Cooperation	at	each	node
Ø ECC	hierarchy	at	𝑣':	𝐝' = 𝑑',8,𝑑',2,⋯ , 𝑑',9:

● ∅ ⊂ 𝒜'
2 ⊂ 𝒜'

3⊂⋯ ⊂ 𝒜'
9:⊆ 𝑉, ℬ'@ 2A@A9: , 𝒜'

2∩ℬ'@ = ∅

● 𝑑',@ 	:	EC	capability	at	𝑣' if	nodes	in	𝒜'
@ are	recovered	

Ø Finer	EC	capability:		𝑑',@ = 𝜆',@;𝒲 ∅⊆𝒲⊆ℬ:
G

● 𝜆',@;𝒲:	EC	capability	while	nodes	in	𝒲 are	also	recovered	
and	involved	in	the	𝑙-th level	cooperation	at	𝑣'

ECC	Hierarchy
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ECC	hierarchy	describes	the	erasure	correction	(EC)	capabilities	
of	nodes	while	cooperating	with	different	sets	of	other	nodes



w Example
Ø Local	decoding:	𝑑',8
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w Example
Ø Local	decoding:	𝑑',8
Ø 𝑣3 obtains	extra	parities	from	𝑣2

● 𝜆3,2;𝒲 = 𝜆3,2;∅,	𝒲⊆ 𝑣I, 𝑣J

ECC	Hierarchy

9

v1

v2

v3

v4

v5

v6
v7

v8
v9

v10

v11

v12

A1
2

B1
2

�i,1;;

�i,1;B1
i

di,0

di,1

�i,2;;

�i,2;B2
i

di,2

�i,3;;

�i,3;B3
i

di,3



w Example
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Ø 𝑣3 obtains	extra	parities	from	𝑣2
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w Example
Ø Local	decoding:	𝑑',8
Ø 𝑣3 obtains	extra	parities	from	𝑣2
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● 𝜆3,2;𝒲 = 𝜆3,2; MN ,	 𝑣L ⊆ 𝒲 ⊂ 𝑣L,𝑣I, 𝑣J
Ø 𝑣3 obtains	extra	parities	from	𝑣O if	 𝑣L, 𝑣I,𝑣J ⊆ 𝒲

● 𝜆3,2;𝒲 = 𝜆3,2; MN,MP,MQ = 𝑑3,2,	𝒲 = 𝑣L,𝑣I, 𝑣J
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w Parity	part	of	the	generator	matrix	of	a	single-level	accessible	
code	based	on	CRS	codes

Example:	Single-Level	Cooperation
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Example:	Single-Level	Cooperation
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w Parity	part	of	the	generator	matrix	of	a	single-level	accessible	
code	based	on	CRS	codes

Ø Diagonal	components:	𝐀','
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w Parity	part	of	the	generator	matrix	of	a	single-level	accessible	
code	based	on	CRS	codes

Ø Diagonal	components:	𝐀','
Ø Non-diagonal	components:	𝐁',T𝐔T
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w Parity	part	of	the	generator	matrix	of	a	single-level	accessible	
code	based	on	CRS	codes

Ø Diagonal	components:	𝐀',' (𝑘'×𝑟' )
Ø Non-diagonal	components:𝐁',T𝐔T (𝑘'×𝛿T,𝛿T×𝑟T)
Ø Components	are	parts	of	Cauchy	matrices	𝐓'

● ℳ' :	nodes	cooperating	with	𝑣' in	the	1-st	level	cooperation

Example:	Single-Level	Cooperation
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𝑑',8 = 𝑟' − 𝛿' ,	𝑑',2 = 𝑟' + ∑ 𝛿TM\∈ℳ: , 𝜆',2;𝒲 = 𝑟' + ∑ 𝛿Tℳ\\ M𝒊 ⊆ℳ:∪𝒲



w Component	matrices

w Why	Cauchy	matrices?
Ø Component	matrices	at	different	nodes	can	be	chosen	
independently	– facilitates scalability

Ø Cauchy-like	structure	is	inherited	through	concatenation	and	
splitting	of	Cauchy	matrices	
● Concatenating	with	a	Cauchy	matrix	of	dimension	𝑘 corresponds	to	
adding	𝑘 extra	parities

● Splitting	the	component	matrices	corresponds	to	splitting	a	local	cloud
-- facilitates flexibility

Cauchy	Matrices:	Scalability	and	Flexibility

11

𝑑',8 = 𝑟' − 𝛿' ,	𝑑',2 = 𝑟' + ∑ 𝛿TM\∈ℳ: , 𝜆',2;𝒲 = 𝑟' + ∑ 𝛿Tℳ\\ M𝒊 ⊆ℳ:∪𝒲
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w ECC	hierarchy	at	node	𝑣3
Ø Local	decoding:	𝑑3,8 = 𝑟3 − 𝛿3

Example:	Hierarchical	Erasure	Correction
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w ECC	hierarchy	at	node	𝑣3
Ø Local	decoding:	𝑑3,8 = 𝑟3 − 𝛿3
Ø Cross	parities	at	node	𝑣3 can	be	subtracted	from	its	local	parity	
part	if	𝑣2, 𝑣K, 𝑣O are	recovered

Example:	Hierarchical	Erasure	Correction

v1

v2

v3

v4

v5

v6
v7

v8
v9

v10

v11

v12

A1
2

B1
2



w ECC	hierarchy	at	node	𝑣3
Ø Local	decoding:	𝑑3,8 = 𝑟3 − 𝛿3
Ø Cross	parities	at	node	𝑣3 can	be	subtracted	from	its	local	parity	
part	if	𝑣2, 𝑣K, 𝑣O are	recovered

Ø Additional	cross	parities of	𝐜3
can	be	obtained	from	𝑣T if
all	other	neighbors of	𝑣T
except	for	𝑣3 are	recovered:	
● 𝜆3,2;𝒲 = 𝑟3 + ∑ 𝛿Tℳ\\ M` ⊆ℳ:∪𝒲

Example:	Hierarchical	Erasure	Correction
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Example:	Fast	Recovery	Speed
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w Suppose	𝐜3 has (𝑟3	+	𝛿2 + 1) erasures
Ø Needs	to	obtain	additional	cross	parities	from	𝑣K or	𝑣O

w Suppose	transmission	over	𝑒',T needs	time	𝑡',T
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required	to	be	recovered
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choose	the	fastest	path	for	recovery



w Error	pattern:	𝑣3,𝑣L, 𝑣J, 𝑣28 are	not	locally	recoverable
Ø Recoverable	in	topology-aware	coding

● Each	red	node	cooperates	with	3 nodes

Example:	Flexible	Erasure	Pattern
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Ø Recoverable	in	topology-aware	coding
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Ø In	centralized	coding	[1],	nodes	are	divided	into	4 groups

● Each	group	contains	at	most	one	non-locally	recoverable	node
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w Error	pattern:	𝑣3,𝑣L, 𝑣J, 𝑣28 are	not	locally	recoverable
Ø Recoverable	in	topology-aware	coding

● Each	red	node	cooperates	with	3 nodes
Ø In	centralized	coding	[1],	nodes	are	divided	into	4 groups

● Each	group	contains	at	most	one	non-locally	recoverable	node
Ø The	EC	capability	at	each	node	(except	for	𝑣2, 𝑣23)	decreases

● information	that	flows	through	edges	marked	in	blue	no	longer	exist
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Example:	Flexible	Erasure	Pattern
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[1]	S.	Yang	et	al.,	“Hierarchical	coding	to	enable	scalability	and	flexibility	
in	heterogeneous	cloud	storage”,	IEEE	CLOBECOM,	2019

Topology-aware	coding	enables	
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w Parity	part	of	the	generator matrix

Ø Components	corresponding	to	the	1-st	level	cooperation	
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w Parity	part	of	the	generator matrix

Ø Components	corresponding	to	the	1-st	level	cooperation	
Ø Components	corresponding	to	higher	level	cooperation

● Can	be	divided	into	different	groups:	each	group	represents	a	cycle
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● Can	be	divided	into	different	groups:	each	group	represents	a	cycle
● Nodes	on	each	vertical	edge	have	the	same	cooperation	level



w Parity	part	of	the	generator matrix

Ø Components	corresponding	to	the	1-st	level	cooperation	
Ø Components	corresponding	to	higher	level	cooperation

● Can	be	divided	into	different	groups:	each	group	represents	a	cycle
● Nodes	on	each	vertical	edge	have	the	same	cooperation	level
● Nodes	on	each	horizontal	edge
has	the	same	component	matrix
that	transfer	a	message	into	a
vector	of	cross	parities

Example:	Multi-Level	Cooperation
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Cooperation Graph: 
the label is simplified into edge types (dashed line 

for 2 and dotted-dashed line for 3
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w The	aforementioned	matrix	is	referred	to	as	a	cooperation	matrix
Ø Construct	the	cooperation	graph	from	the	cooperation	matrix

● Each	cycle	represents	a	pair	of	edges/triangles,	with	an	arrow	pointing	
from	one	to	the	other,	labelled	with	the	cooperation	level
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w The	aforementioned	matrix	is	referred	to	as	a	cooperation	matrix
Ø Construct	the	cooperation	graph	from	the	cooperation	matrix

● Each	cycle	represents	a	pair	of	edges/triangles,	with	an	arrow	pointing	
from	one	to	the	other,	labelled	with	the	cooperation	level
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Ø Construct	the	cooperation	graph	from	the	cooperation	matrix

● Each	cycle	represents	a	pair	of	edges/triangles,	with	an	arrow	pointing	
from	one	to	the	other,	labelled	with	the	cooperation	level
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Cooperation	graph	depicts	the	cooperation	of	information,	
i.e.,	how	the	information	is	coupled	in	the	coded	DSN
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w Compatible	graphs
Ø Cooperation	graphs	that	adopts	the	following	construction

● Higher	level	cooperation:	𝐁',T𝐕T;@ (𝑘'×𝜂T;@ ,𝜂T;@×𝑟T)

● 𝐄';@;o (𝑘'×𝛾';o),	𝐁',T = 𝐄';@;o, 𝟎r:×(s\;Gtu:;v) ,	𝑡 ∈ 𝑇';@ ,𝑗 ∈ 𝑌o;'
● 𝑇';@ :	indices	of	all	cycles	that	provide	extra	parities	in	the	𝑙-th level	
cooperation	of	node	𝑣'

Ø ECC	Hierarchy

17

Constructions	Over	Compatible	Graphs

𝑑',8 = 𝑟' − 𝛿' − ∑ 𝜂';@
9:
@h3 ,	𝑑',2 = 𝑟' + ∑ 𝛿TM\∈ℳ: ,	

𝑑',3 = 𝑟' + ∑ 𝛿TM\∈ℳ: +∑ 𝛾';o3A@yA@,o∈z:;Gy

Bi,j Uj(Vj;l)mi miBi,j miBi,jUj(miBi,jVj;l)
Cross parities Encoded cross parities



w Objective:	Cross	parities	at	each	level	can	be	removed	by	accessing	
the	neighboring	nodes	only

Constructions	Over	Compatible	Graphs

18
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w Objective:	Cross	parities	at	each	level	can	be	removed	by	accessing	
the	neighboring	nodes	only

w Sufficient	conditions
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w Objective:	Cross	parities	at	each	level	can	be	removed	by	accessing	
the	neighboring	nodes	only

w Sufficient	conditions
Ø The	summation	of	cross	parities	generated	from	all	nodes	at	
each	cycle	is	a	zero	vector	on	GF(2~)

Ø Sum	(𝐬T;@)	of	𝑙-th level cross	parities	at	
node	𝑣T in	are	obtained	if	𝑣T is	recovered
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w Objective:	Cross	parities	at	each	level	can	be	removed	by	accessing	
the	neighboring	nodes	only

w Sufficient	conditions
Ø The	summation	of	cross	parities	generated	from	all	nodes	at	
each	cycle	is	a	zero	vector	on	GF(2~)

Ø Sum	(𝐬T;@)	of	𝑙-th level cross	parities	at	
node	𝑣T in	are	obtained	if	𝑣T is	recovered
● ℐ'@ :	nodes	in	the	𝑙-th level	cooperation	at	𝑣'

The	cycle	group	containing	ℐ'@ such	that	its	
intersection	with	column	𝑗 is	the	union	of	some	ℐT@

y

is	completely	contained	in	columns	spanned	by	ℐ'@
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w Objective:	Cross	parities	at	each	level	can	be	removed	by	accessing	
the	neighboring	nodes	only

w Sufficient	conditions
Ø The	summation	of	cross	parities	generated	from	all	nodes	at	
each	cycle	is	a	zero	vector	on	GF(2~)

Ø Sum	(𝐬T;@)	of	𝑙-th level cross	parities	at	
node	𝑣T in	are	obtained	if	𝑣T is	recovered
● ℐ'@ :	nodes	in	the	𝑙-th level	cooperation	at	𝑣'
● 𝐬';@ is	the	summation	of	all	𝐬T;@’s

The	cycle	group	containing	ℐ'@ such	that	its	
intersection	with	column	𝑗 is	the	union	of	some	ℐT@

y

is	completely	contained	in	columns	spanned	by	ℐ'@
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Conclusion

w Main	contributions
Ø A	hierarchical	coding	framework	that	provides	topology-aware	
cooperative	data	protection	for	DSNs

Ø The	framework	supports	scalability and flexibility
Ø Our	scheme	achieves	faster	recovery	speed	and	corrects	more	
flexible	erasure	patterns

w Follow-up work (already done)
Ø Analysis	of	recoverable	erasure	patterns
Ø Algorithms	that	search	for	cooperation	graphs	in	a	network

w Future	work
Ø Codes	that	support non-locally	decodable	neighboring	nodes
Ø Error correction	for	latency-sensitive	devices	at	the	edge
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