Order-Optimal Permutation Codes in the Generalized Cayley Metric

Siyi Yang, Clayton Schoeny, Lara Dolecek

LORIS, Electrical and Computer Engineering, UCLA

March 12th, 2018

Outline

Motivation

- Background
- Objective

2 Theoretical Analysis

- Distances of Interest
- Order-Optimal Codes

3 Construction

- Encoding Schemes
- Decoding Schemes
- Rate Analysis

Systematic Codes

- General Ideas
- Constructions

5 Conclusion

• Conclusion and Future Work

Motivation

Outline

- Background
- Objective

2 Theoretical Analysis

- Distances of Interest
- Order-Optimal Codes

3 Construction

- Encoding Schemes
- Decoding Schemes
- Rate Analysis

Systematic Codes

- General Ideas
- Constructions

Conclusion

• Conclusion and Future Work

Applications

• Flash memories: charge leakage between cells [1]

[1] A. Jiang et al. "Rank Modulation for Flash Memories". In: IEEE Trans. Inf. Theory 55.6 (2009), pp. 2659-2673.

Applications

• Flash memories: charge leakage between cells [1]

• Genome resequencing: gene rearrangement in a chromosome [2]

^[1] A. Jiang et al. "Rank Modulation for Flash Memories". In: IEEE Trans. Inf. Theory 55.6 (2009), pp. 2659–2673.

^[2] R. Zeira and R. Shamir. "Sorting by cuts, joins and whole chromosome duplications". In: Journal of Computational Biology 24 (2017), pp. 127–137.

Motivation Background

Applications

• Flash memories: charge leakage between cells [1]

• Genome resequencing: gene rearrangement in a chromosome [2]

• Cloud storage system: rearrangements of items in multiple folders

- [1] A. Jiang et al. "Rank Modulation for Flash Memories". In: IEEE Trans. Inf. Theory 55.6 (2009), pp. 2659-2673.
- [2] R. Zeira and R. Shamir. "Sorting by cuts, joins and whole chromosome duplications". In: Journal of Computational Biology 24 (2017), pp. 127-137.

Common measures

- Common measures
 - Kendall- τ metric: transpositions [3]

1 2 3 4 <mark>5</mark> 6 7	8 9	1 2 3 4 6	<mark>5</mark> 789
----------------------------	-----	-----------	--------------------

^[3] Y. Zhang and G. Ge. "Snake-in-the-Box Codes for Rank Modulation Under Kendall's *τ*-Metric". In: *IEEE Trans. Inf. Theory* 62 (Jan. 2016), pp. 151–158.

- Common measures
 - Kendall- τ metric: transpositions [3]

1	2 2 4	5 6	7 8 9	1 2 3 4	6 5	7 8 9

• Ulam metric: translocation [4]

5 6 7 8 9 → 1 2 6 3 4 5

^[3] Y. Zhang and G. Ge. "Snake-in-the-Box Codes for Rank Modulation Under Kendall's τ-Metric". In: IEEE Trans. Inf. Theory 62 (Jan. 2016), pp. 151–158.

^[4] F. Farnoud, V. Skachek, and O. Milenkovic. "Error-correction in Flash Memories via Codes in the Ulam Metric". In: IEEE Trans. Inf. Theory 59 (May 2013), pp. 3003–3020.

- Common measures
 - Kendall- τ metric: transpositions [3]

3 1 5 6 7 9 0

•	Ulam n	net	ric	: t	ran	slo	oca [.]	tio	n [4	4]										
		1	2	3	4	5	6	7	8	9		1	2	6	3	4	5	7	8	9

• Measure under discussion

3 4 6 5 7 8 9

^[3] Y. Zhang and G. Ge. "Snake-in-the-Box Codes for Rank Modulation Under Kendall's τ-Metric". In: IEEE Trans. Inf. Theory 62 (Jan. 2016), pp. 151–158.

^[4] F. Farnoud, V. Skachek, and O. Milenkovic. "Error-correction in Flash Memories via Codes in the Ulam Metric". In: IEEE Trans. Inf. Theory 59 (May 2013), pp. 3003–3020.

- Common measures
 - Kendall- τ metric: transpositions [3]

1 2 3 4 <mark>5</mark> 6 7 8 9	$ \longrightarrow$	1 2 3 4	65	789
---------------------------------------	---------------------	---------	----	-----

• Ulam metric: translocation [4]

- **1 2 3 4 5 6** 7 8 9 **→ 1 2 6 3 4 5** 7 8 9
- Measure under discussion
 - Generalized Cayley metric: generalized transposition [5]

• No restrictions on the lengths and positions of the translocated segments

^[3] Y. Zhang and G. Ge. "Snake-in-the-Box Codes for Rank Modulation Under Kendall's τ-Metric". In: IEEE Trans. Inf. Theory 62 (Jan. 2016), pp. 151–158.

^[4] F. Farnoud, V. Skachek, and O. Milenkovic. "Error-correction in Flash Memories via Codes in the Ulam Metric". In: IEEE Trans. Inf. Theory 59 (May 2013), pp. 3003–3020.

^[5] Y. M. Chee and V. K. Vu. "Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics". In: Proc. IEEE Int. Symp. Inf. Theory. Havaii, USA, June 2014, pp. 2959–2963.

- Objective
 - Construction of order-optimal codes in the generalized Cayley metric

- Objective
 - Construction of order-optimal codes in the generalized Cayley metric
- Prior work [6]

^[6] Y. M. Chee and V. K. Vu. "Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics". In: Proc. IEEE Int. Symp. Inf. Theory. Havaii, USA, June 2014, pp. 2959–2963.

- Objective
 - Construction of order-optimal codes in the generalized Cayley metric
- Prior work [6]
 - Based on the error-correcting codes in the Ulam metric [7]

^[6] Y. M. Chee and V. K. Vu. "Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics". In: Proc. IEEE Int. Symp. Inf. Theory. Havaii, USA, June 2014, pp. 2959–2963.

^[7] F. Farnoud, V. Skachek, and O. Milenkovic. "Error-correction in Flash Memories via Codes in the Ulam Metric". In: IEEE Trans. Inf. Theory 59 (May 2013), pp. 3003–3020.

- Objective
 - Construction of order-optimal codes in the generalized Cayley metric
- Prior work [6]
 - Based on the error-correcting codes in the Ulam metric [7]
 - Interleaving based: induce a redundancy of $\mathcal{O}(N)$ bits, where N is the codelength

^[6] Y. M. Chee and V. K. Vu. "Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics". In: Proc. IEEE Int. Symp. Inf. Theory. Havaii, USA, June 2014, pp. 2959–2963.

^[7] F. Farnoud, V. Skachek, and O. Milenkovic. "Error-correction in Flash Memories via Codes in the Ulam Metric". In: IEEE Trans. Inf. Theory 59 (May 2013), pp. 3003–3020.

- Objective
 - Construction of order-optimal codes in the generalized Cayley metric
- Prior work [6]
 - Based on the error-correcting codes in the Ulam metric [7]
 - Interleaving based: induce a redundancy of $\mathcal{O}(\textit{N})$ bits, where N is the codelength
- Ultimate goal
 - Redundancy for an order-optimal code that corrects t generalized transposition errors: $O(t \log N)$ bits

^[6] Y. M. Chee and V. K. Vu. "Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics". In: Proc. IEEE Int. Symp. Inf. Theory. Havaii, USA, June 2014, pp. 2959–2963.

^[7] F. Farnoud, V. Skachek, and O. Milenkovic. "Error-correction in Flash Memories via Codes in the Ulam Metric". In: IEEE Trans. Inf. Theory 59 (May 2013), pp. 3003–3020.

Outline

Background

- Objective
- 2 Theoretical Analysis
 - Distances of Interest
 - Order-Optimal Codes

Construction

- Encoding Schemes
- Decoding Schemes
- Rate Analysis

Systematic Codes

- General Ideas
- Constructions

Conclusion

• Conclusion and Future Work

- Generalized transposition $\phi(i_1, j_1, i_2, j_2)$:
 - $\phi(i_1, j_1, i_2, j_2) \in S_N$, $i_1 \leq j_1 < i_2 \leq j_2 \in [N]$, S_N is the symmetric group of permutations with length N
 - A permutation obtained from swapping the segments $e[i_1, j_1]$ and $e[i_2, j_2]$ in the identity permutation

- Generalized transposition $\phi(i_1, j_1, i_2, j_2)$:
 - $\phi(i_1, j_1, i_2, j_2) \in \mathbb{S}_N$, $i_1 \leq j_1 < i_2 \leq j_2 \in [N]$, \mathbb{S}_N is the symmetric group of permutations with length N
 - A permutation obtained from swapping the segments $e[i_1, j_1]$ and $e[i_2, j_2]$ in the identity permutation

- Generalized transposition $\phi(i_1, j_1, i_2, j_2)$:
 - $\phi(i_1, j_1, i_2, j_2) \in S_N$, $i_1 \le j_1 < i_2 \le j_2 \in [N]$, S_N is the symmetric group of permutations with length N
 - A permutation obtained from swapping the segments $e[i_1, j_1]$ and $e[i_2, j_2]$ in the identity permutation

- Generalized transposition $\phi(i_1, j_1, i_2, j_2)$:
 - $\phi(i_1, j_1, i_2, j_2) \in S_N$, $i_1 \leq j_1 < i_2 \leq j_2 \in [N]$, S_N is the symmetric group of permutations with length N
 - A permutation obtained from swapping the segments $e[i_1, j_1]$ and $e[i_2, j_2]$ in the identity permutation

• $\pi_2 = \pi_1 \circ \phi$

• Generalized Cayley distance $d_G(\pi_1, \pi_2)$:

• The minimum number of generalized transpositions that is needed to obtain the permutation π_2 from π_1 ,

$$d_{G}(\pi_{1},\pi_{2}) \triangleq \min_{d} \{ \exists \phi_{1},\phi_{2},\cdots,\phi_{d} \in \mathbb{T}_{N}, \\ \text{s.t., } \pi_{2} = \pi_{1} \circ \phi_{1} \circ \phi_{2} \cdots \circ \phi_{d} \}.$$

Distances of Interest

- Exact value of $d_{G}(\pi_{1},\pi_{2})$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in block permutation distance

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in block permutation distance
- Characteristic set $A(\pi) \triangleq \{(\pi(i), \pi(i+1)) | 1 \le i \le N\}$

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in block permutation distance
- Characteristic set $A(\pi) \triangleq \{(\pi(i), \pi(i+1)) | 1 \le i \le N\}$
- Observation
 - Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in block permutation distance
- Characteristic set $A(\pi) \triangleq \{(\pi(i), \pi(i+1)) | 1 \le i \le N\}$
- Observation
 - Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in block permutation distance
- Characteristic set $A(\pi) \triangleq \{(\pi(i), \pi(i+1)) | 1 \le i \le N\}$
- Observation
 - Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in block permutation distance
- Characteristic set $A(\pi) \triangleq \{(\pi(i), \pi(i+1)) | 1 \le i \le N\}$
- Observation
 - Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)

- Exact value of $d_G(\pi_1, \pi_2)$ is hard to compute
 - Objective: find another distance that $d_G(\pi_1, \pi_2)$ can be embedded in block permutation distance
- Characteristic set $A(\pi) \triangleq \{(\pi(i), \pi(i+1)) | 1 \le i \le N\}$
- Observation
 - Each generalized transposition changes at most 4 elements in the characteristic set (boundaries of the unaltered blocks)

- Block permutation distance $d_B(\pi_1, \pi_2)$:
 - $d_B(\pi_1, \pi_2) = d$ iff $\exists \sigma \in \mathbb{D}_{d+1}$ such that $\forall 1 \leq i \leq d$, $\sigma(i+1) \neq \sigma(i) + 1$, $\psi_k = \pi_1 [i_{k-1} + 1 : i_k]$ for some $0 = i_0 < i_1 \cdots < i_d < i_{d+1} = N$, and $1 \leq k \leq d+1$, such that

$$\pi_1 = (\psi_1, \psi_2, \cdots, \psi_{d+1}),$$

$$\pi_2 = (\psi_{\sigma(1)}, \psi_{\sigma(2)}, \cdots, \psi_{\sigma(d+1)}).$$

- Block permutation distance $d_B(\pi_1, \pi_2)$:
 - $d_B(\pi_1, \pi_2) = d$ iff $\exists \sigma \in \mathbb{D}_{d+1}$ such that $\forall 1 \leq i \leq d, \sigma(i+1) \neq \sigma(i) + 1, \psi_k = \pi_1 [i_{k-1} + 1 : i_k]$ for some $0 = i_0 < i_1 \cdots < i_d < i_{d+1} = N$, and $1 \leq k \leq d+1$, such that

$$\pi_1 = (\psi_1, \psi_2, \cdots, \psi_{d+1}),$$

$$\pi_2 = (\psi_{\sigma(1)}, \psi_{\sigma(2)}, \cdots, \psi_{\sigma(d+1)})$$

- Block permutation distance $d_B(\pi_1, \pi_2)$:
 - $d_B(\pi_1, \pi_2) = d$ iff $\exists \sigma \in \mathbb{D}_{d+1}$ such that $\forall 1 \leq i \leq d$, $\sigma(i+1) \neq \sigma(i) + 1$, $\psi_k = \pi_1 [i_{k-1} + 1 : i_k]$ for some $0 = i_0 < i_1 \cdots < i_d < i_{d+1} = N$, and $1 \leq k \leq d+1$, such that

$$\pi_1 = (\psi_1, \psi_2, \cdots, \psi_{d+1}),$$

$$\pi_2 = (\psi_{\sigma(1)}, \psi_{\sigma(2)}, \cdots, \psi_{\sigma(d+1)})$$

•
$$d_B(\pi_1, \pi_2) = \frac{1}{2} |A(\pi_1) \Delta A(\pi_2)|$$

- Block permutation distance $d_B(\pi_1, \pi_2)$:
 - $d_B(\pi_1, \pi_2) = d$ iff $\exists \sigma \in \mathbb{D}_{d+1}$ such that $\forall 1 \leq i \leq d$, $\sigma(i+1) \neq \sigma(i) + 1$, $\psi_k = \pi_1 [i_{k-1} + 1 : i_k]$ for some $0 = i_0 < i_1 \cdots < i_d < i_{d+1} = N$, and $1 \leq k \leq d+1$, such that

$$\pi_1 = (\psi_1, \psi_2, \cdots, \psi_{d+1}),$$

$$\pi_2 = (\psi_{\sigma(1)}, \psi_{\sigma(2)}, \cdots, \psi_{\sigma(d+1)})$$

•
$$d_B(\pi_1, \pi_2) = \frac{1}{2} |A(\pi_1) \Delta A(\pi_2)|$$

• Metric embedding:

$$d_{G}(\pi_{1},\pi_{2}) \leq d_{B}(\pi_{1},\pi_{2}) \leq 4d_{G}(\pi_{1},\pi_{2})$$

- *t*-Generalized Cayley code $C_G(N, t)$
 - Corrects t generalized transposition errors, $d_{G,min} \geq 2t + 1$

- *t*-Generalized Cayley code $C_G(N, t)$
 - Corrects t generalized transposition errors, $d_{G,min} \geq 2t + 1$
- *t*-Block permutation code $C_B(N, t)$
 - Minimum block permutation distance $d_{B,min} \geq 2t + 1$

- *t*-Generalized Cayley code $C_G(N, t)$
 - Corrects t generalized transposition errors, $d_{G,min} \geq 2t + 1$
- *t*-Block permutation code $C_B(N, t)$
 - Minimum block permutation distance $d_{B,min} \ge 2t + 1$
- Optimal code rates: $R_{G,opt}(N, t)$, $R_{B,opt}(N, t)$

- *t*-Generalized Cayley code $C_G(N, t)$
 - Corrects t generalized transposition errors, $d_{G,min} \geq 2t + 1$
- *t*-Block permutation code $C_B(N, t)$
 - Minimum block permutation distance $d_{B,min} \geq 2t+1$
- Optimal code rates: $R_{G,opt}(N, t)$, $R_{B,opt}(N, t)$
- Order-optimal 4*t*-block permutation codes are order-optimal *t*-generalized Cayley codes

Theorem

The optimal rates satisfy the following inequalites,

$$1 - c_1 \cdot \frac{2t+1}{N} \leq R_{B,opt}(N,t) \leq 1 - \frac{t}{N},$$

$$1 - c_1 \cdot \frac{8t+1}{N} \leq R_{G,opt}(N,t) \leq 1 - c_2 \cdot \frac{4t}{N},$$

for fixed t and sufficiently large N, where $c_1 = 1 + \frac{2 \log e}{\log N}$, $c_2 = 1 - \frac{3(\log t+1)}{4(\log N-1)}$.
Outline

Background

- Objective
- 2 Theoretical Analysis
 - Distances of Interest
 - Order-Optimal Codes

3 Construction

- Encoding Schemes
- Decoding Schemes
- Rate Analysis

Systematic Codes

- General Ideas
- Constructions

Conclusion

• Conclusion and Future Work

Key Idea in Encoding Scheme

Key Idea in Encoding Scheme

Step 1: Compute the characteristic set $A(\pi)$ for every π

Key Idea in Encoding Scheme

Step 1: Compute the characteristic set $A(\pi)$ for every π Step 2: Map $A(\pi)$ onto \mathbb{F}_q as $g(\pi)$, where q is a prime number such that $N^2 - N \le q \le 2N^2 - 2N$ (Bertrand's Postulate)

Encoding Schemes

Key Idea in Encoding Scheme

Step 1: Compute the characteristic set $A(\pi)$ for every π

- Step 2: Map $A(\pi)$ onto \mathbb{F}_q as $g(\pi)$, where q is a prime number such that $N^2 N \le q \le 2N^2 2N$ (Bertrand's Postulate)
- Step 3: Compute the parity check sum $h_t(\pi)$. Here $h_t(\pi) \triangleq (\alpha_1, \alpha_2, \cdots, \alpha_{4t-1}), \ \alpha_i = \sum_{b \in g(\pi)} b^i, \ 1 \le i \le 4t 1$

Encoding Schemes

Key Idea in Encoding Scheme

Step 1: Compute the characteristic set $A(\pi)$ for every π

- Step 2: Map $A(\pi)$ onto \mathbb{F}_q as $g(\pi)$, where q is a prime number such that $N^2 N \le q \le 2N^2 2N$ (Bertrand's Postulate)
- Step 3: Compute the parity check sum $h_t(\pi)$. Here $h_t(\pi) \triangleq (\alpha_1, \alpha_2, \cdots, \alpha_{4t-1}), \ \alpha_i = \sum_{b \in g(\pi)} b^i, \ 1 \le i \le 4t-1$
- Step 4: Permutations with the same α constitute a *t*-block permutation code $C_{\alpha}(N, t)$

Key Idea in Encoding Scheme

Step 1: Compute the characteristic set $A(\pi)$ for every π

- Step 2: Map $A(\pi)$ onto \mathbb{F}_q as $g(\pi)$, where q is a prime number such that $N^2 N \le q \le 2N^2 2N$ (Bertrand's Postulate)
- Step 3: Compute the parity check sum $h_t(\pi)$. Here $h_t(\pi) \triangleq (\alpha_1, \alpha_2, \cdots, \alpha_{4t-1}), \ \alpha_i = \sum_{b \in g(\pi)} b^i, \ 1 \le i \le 4t-1$
- Step 4: Permutations with the same α constitute a *t*-block permutation code $C_{\alpha}(N, t)$

Note: $\mathcal{C}_{\alpha}(\textit{N},t)$ with the maximum cardinality is order-optimal

Auxiliary Bound Results

Theorem

For all
$$B_1, B_2 \subset \mathbb{F}_q$$
, if $h_t(B_1) = h_t(B_2)$, then $|B_1 \Delta B_2| > 4t$.

Proof.

If
$$|B_1 \Delta B_2| \le 4t$$
, then $B_1 \setminus B_2 = \{x_1, x_2, \cdots, x_k\}$,
 $B_2 \setminus B_1 = \{x_{k+1}, x_{k+2}, \cdots, x_{2k}\}, k \le 2t$.

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{2k} \\ x_1^2 & x_2^2 & \cdots & x_{2k}^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{2d-1} & x_2^{2d-1} & \cdots & x_{2k}^{2d-1} \end{pmatrix} \mathbf{y} = \mathbf{0},$$

where $\mathbf{y} = [y_1, y_2, \dots, y_{2k}]^T$, $y_i = 1 (i \le k)$, $y_i = -1 (i > k)$. The Vandermonde matrix has determinant $0 \Longrightarrow \exists i, j$ such that $x_i = x_j$, contradiction!

Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π , $d_B(\pi, \pi') \leq t$

Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π , $d_B(\pi, \pi') \leq t$ Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π'

Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π , $d_B(\pi, \pi') \leq t$ Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π' Note: Characteristic function $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$

Decoding Schemes

Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π , $d_B(\pi, \pi') \leq t$ Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π' Note: Characteristic function $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$ f_2 provides incomplete information about the roots of f_1 α provides complete information about the 4t - 1 coefficients of f_1

15 / 30

Decoding Schemes

Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π , $d_B(\pi, \pi') \leq t$ Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π' Note: Characteristic function $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$ Step 2: Compute $f_1(X) = f(X; \pi)$ from α and f_2

Decoding Schemes

Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π , $d_B(\pi, \pi') \leq t$ Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π' Note: Characteristic function $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$ Step 2: Compute $f_1(X) = f(X; \pi)$ from α and f_2 Step 3: Compute $g(\pi)$, $A(\pi)$ and π

Decoding Schemes

Key Steps in Decoding Algorithm

Channel: Receiver receives π' when sender sends π , $d_B(\pi, \pi') \leq t$ Step 1: Compute $A(\pi')$, $g(\pi')$ and $f_2 = (X; \pi')$ from π' Note: Characteristic function $f(X; \pi) = \prod_{b \in g(\pi)} (X + b)$ Step 2: Compute $f_1(X) = f(X; \pi)$ from α and f_2 Step 3: Compute $g(\pi)$, $A(\pi)$ and π

Construction Dec

Decoding Schemes

Main Block

- $(X^{t-k}\gamma_3, X^{t-k}\gamma_2)$ is a solution to $h_1 \circ f_1 = h_2 \circ f_2$, $\deg h_1 = \deg h_2 = t$
 - Any solution (h_1, h_2) is sufficient for computing γ_2, γ_3 : $\gamma_1 = gcd(h_1, h_2), \gamma_3 = \frac{h_1}{\gamma_1}, \gamma_2 = \frac{h_2}{\gamma_1};$

• The first 4t constraints of the coefficients for $h_1 \cot f_1 = h_2 \cdot f_2$ is Ac = b

- The coefficient of $X^{N+t-k-1}$ in f_{a_k} , (a_1, \dots, a_{4t-1}) is known from Newton's Identities
- The coefficient of X^{t-k} in h: c_k
- We can compute the coefficients of h_1, h_2 from the solution of $\mathbf{Ac} = \mathbf{b}$

Rate Analysis

Rate Comparison with Interleaving Based Codes

Lemma

Let $R_G(N, t)$, $R_{\rho_g C}(N, t)$ be the rate of our proposed code and the existing interleaving-based code, respectively. Then $R_G(N, t) > R_{\rho_g C}(N, t)$ when $t < \frac{N}{(16 \log N+8)}$ for sufficiently large N.

Proof.

We know from previous discussion and [a] that

$$\begin{aligned} R_{\rho_g C}(N,t) &< 1 - \frac{2N + \mathcal{O}\left((\log N)^2\right)}{N\log N - (\log e)N + \frac{1}{2}\log N} &\sim 1 - \frac{2}{\log N}, \\ R_G(N,t) &> 1 - \frac{32t\log N + 16t}{N\log N - (\log e)N + \frac{1}{2}\log N} &\sim 1 - \frac{32t}{N}, \end{aligned}$$

(1)

 $R_G(N, t) - R_{\rho_g C}(N, t) > 0$ when $t < \frac{N}{(16 \log N + 8)}$ for sufficiently large N.

[[]a] R. Gabrys et al. "Codes Correcting Erasures and Deletions for Rank Modulation". In: IEEE Trans. Inf. Theory 62 (Jan. 2016), pp. 136–150.

Outline

Background

- Objective
- 2 Theoretical Analysis
 - Distances of Interest
 - Order-Optimal Codes

3 Construction

- Encoding Schemes
- Decoding Schemes
- Rate Analysis

4 Systematic Codes

- General Ideas
- Constructions

Conclusion

• Conclusion and Future Work

• Problems in the previous construction

- Problems in the previous construction
 - Not explicitly constructive

- Problems in the previous construction
 - Not explicitly constructive
 - Non-systematic

- Problems in the previous construction
 - Not explicitly constructive
 - Non-systematic
 - Difficult to identify a bijection between the transmitted messages and the codewords

- Problems in the previous construction
 - Not explicitly constructive
 - Non-systematic
 - Difficult to identify a bijection between the transmitted messages and the codewords
- Solution
 - Constructing systematic codes in the generalized Cayley metric

- Problems in the previous construction
 - Not explicitly constructive
 - Non-systematic
 - Difficult to identify a bijection between the transmitted messages and the codewords
- Solution
 - · Constructing systematic codes in the generalized Cayley metric
 - Extended work submitted to IEEE Trans. Information Theory, also available at arxiv: https://arxiv.org/abs/1803.04314

Systematic Codes in the Generalized Cayley Metric

• Main idea: insert k elements [N+1: N+k] into the length N permutations at positions decided by their parity check sums

Systematic Codes in the Generalized Cayley Metric

• Main idea: insert k elements [N+1: N+k] into the length N permutations at positions decided by their parity check sums

• Find an injection $\eta: \mathbb{F}_q^{4t-1} \to [N]^k$ for some $k \sim \mathcal{O}(t)$

- Main idea: insert k elements [N + 1 : N + k] into the length N permutations at positions decided by their parity check sums
 - Find an injection η : $\mathbb{F}_q^{4t-1} \to [N]^k$ for some $k \sim \mathcal{O}(t)$
- $\bullet\,$ Permutations with the same parity check sum keep a distance greater than 2t

- Main idea: insert k elements [N+1: N+k] into the length N permutations at positions decided by their parity check sums
 - Find an injection η : $\mathbb{F}_q^{4t-1} \to [N]^k$ for some $k \sim \mathcal{O}(t)$
- $\bullet\,$ Permutations with the same parity check sum keep a distance greater than 2t
- Permutations with different parity check sums

- Main idea: insert k elements [N+1: N+k] into the length N permutations at positions decided by their parity check sums
 - Find an injection $\eta: \mathbb{F}_q^{4t-1} \to [N]^k$ for some $k \sim \mathcal{O}(t)$
- $\bullet\,$ Permutations with the same parity check sum keep a distance greater than 2t
- Permutations with different parity check sums
 - Each element in $\eta(oldsymbollpha)$ is identical to an element in π

- Main idea: insert k elements [N+1: N+k] into the length N permutations at positions decided by their parity check sums
 - Find an injection $\eta: \mathbb{F}_q^{4t-1} \to [N]^k$ for some $k \sim \mathcal{O}(t)$
- $\bullet\,$ Permutations with the same parity check sum keep a distance greater than 2t
- Permutations with different parity check sums
 - Each element in $\eta({m lpha})$ is identical to an element in π
 - Insert N + i, $1 \le i \le k$ sequentially after the element in π identical to the *i*-th element in $\eta(\alpha)$

- Main idea: insert k elements [N+1: N+k] into the length N permutations at positions decided by their parity check sums
 - Find an injection η : $\mathbb{F}_q^{4t-1} \to [N]^k$ for some $k \sim \mathcal{O}(t)$
- $\bullet\,$ Permutations with the same parity check sum keep a distance greater than 2t
- Permutations with different parity check sums
 - Each element in $\eta({m lpha})$ is identical to an element in π
 - Insert $\mathit{N}+\mathit{i},\,1\leq\mathit{i}\leq\mathit{k}$ sequentially after the element in π identical to the $\mathit{i}\text{-th}$ element in $\eta(\pmb{\alpha})$
 - New permutations also have distance at least 2t+1

- Extension of π at the extension point $s, \pi \in \mathbb{S}_N, s \in [N]$: $E(\pi, s) \triangleq (\pi_1, \pi_2, \cdots, \pi_k = s, N+1, \pi_{k+1}, \cdots, \pi_N)$
- Extension of π at the extension sequence $S = (s_1, s_2, \dots, s_k), \pi \in \mathbb{S}_N, S \in [N]^k$: $E(\pi, S) \triangleq E(E(\dots, E(E(\pi, s_1), s_2), \dots, s_{k-1}), s_k)$

Constructions

- Extension of π at the extension point $s, \pi \in \mathbb{S}_N, s \in [N]$: $E(\pi, s) \triangleq (\pi_1, \pi_2, \cdots, \pi_k = s, N+1, \pi_{k+1}, \cdots, \pi_N)$
- Extension of π at the extension sequence $S = (s_1, s_2, \dots, s_k), \pi \in \mathbb{S}_N$, $S \in [N]^k$: $E(\pi, S) \triangleq E(E(\dots, E(E(\pi, s_1), s_2), \dots, s_{k-1}), s_k)$

Constructions

- Extension of π at the extension point $s, \pi \in \mathbb{S}_N, s \in [N]$: $E(\pi, s) \triangleq (\pi_1, \pi_2, \cdots, \pi_k = s, N+1, \pi_{k+1}, \cdots, \pi_N)$
- Extension of π at the extension sequence $S = (s_1, s_2, \dots, s_k), \pi \in \mathbb{S}_N$, $S \in [N]^k$: $E(\pi, S) \triangleq E(E(\dots, E(E(\pi, s_1), s_2), \dots, s_{k-1}), s_k)$

Constructions

- Extension of π at the extension point $s, \pi \in \mathbb{S}_N, s \in [N]$: $E(\pi, s) \triangleq (\pi_1, \pi_2, \cdots, \pi_k = s, N+1, \pi_{k+1}, \cdots, \pi_N)$
- Extension of π at the extension sequence $S = (s_1, s_2, \dots, s_k), \pi \in \mathbb{S}_N$, $S \in [N]^k$: $E(\pi, S) \triangleq E(E(\dots, E(E(\pi, s_1), s_2), \dots, s_{k-1}), s_k)$

Constructions

- Extension of π at the extension point $s, \pi \in \mathbb{S}_N, s \in [N]$: $E(\pi, s) \triangleq (\pi_1, \pi_2, \cdots, \pi_k = s, N+1, \pi_{k+1}, \cdots, \pi_N)$
- Extension of π at the extension sequence $S = (s_1, s_2, \dots, s_k), \pi \in \mathbb{S}_N$, $S \in [N]^k$: $E(\pi, S) \triangleq E(E(\dots, E(E(\pi, s_1), s_2), \dots, s_{k-1}), s_k)$

Systematic Codes

Constructions

Extension of Permutations (Definition 5)

- Extension of π at the extension point $s, \pi \in \mathbb{S}_N, s \in [N]$: $E(\pi, s) \triangleq (\pi_1, \pi_2, \cdots, \pi_k = s, N+1, \pi_{k+1}, \cdots, \pi_N)$
- Extension of π at the extension sequence $S = (s_1, s_2, \dots, s_k), \pi \in \mathbb{S}_N, S \in [N]^k$: $E(\pi, S) \triangleq E(E(\dots, E(E(\pi, s_1), s_2), \dots, s_{k-1}), s_k)$

Systematic Codes

Constructions

Extension of Permutations (Definition 5)

- Extension of π at the extension point $s, \pi \in \mathbb{S}_N, s \in [N]$: $E(\pi, s) \triangleq (\pi_1, \pi_2, \cdots, \pi_k = s, N+1, \pi_{k+1}, \cdots, \pi_N)$
- Extension of π at the extension sequence $S = (s_1, s_2, \dots, s_k), \pi \in \mathbb{S}_N$, $S \in [N]^k$: $E(\pi, S) \triangleq E(E(\dots, E(E(\pi, s_1), s_2), \dots, s_{k-1}), s_k)$

• s_1 is **Jump point** of $\sigma_1 = E(\pi_1, s_1)$ with respect to $\sigma_2 = E(\pi_2, s_2)$ if (suppose $\pi_{1,k_1} = s_1$ and $\pi_{2,k_2} = s_2$) Case 1 $k_1 = N$ or $k_2 = N$; Case 2 $k_1, k_2 < N$, and $\pi_{1,k_1+1} \neq \pi_{2,k_2+1}$.

 s₁ is Jump point of σ₁ = E(π₁, s₁) with respsect to σ₂ = E(π₂, s₂) if (suppose π_{1,k1} = s₁ and π_{2,k2} = s₂) Case 1 k₁ = N or k₂ = N; Case 2 k₁, k₂ < N, and π_{1,k1+1} ≠ π_{2,k2+1}.
 d_B(E(π₁, s₁), E(π₂, s₂)) > d_B(π₁, π₂) iff s₁ is a jump point (Lemma 9)

- s₁ is Jump point of σ₁ = E(π₁, s₁) with respsect to σ₂ = E(π₂, s₂) if (suppose π_{1,k1} = s₁ and π_{2,k2} = s₂) Case 1 k₁ = N or k₂ = N; Case 2 k₁, k₂ < N, and π_{1,k1+1} ≠ π_{2,k2+1}.
 d_B(E(π₁, s₁), E(π₂, s₂)) > d_B(π₁, π₂) iff s₁ is a jump point (Lemma 9)
 - $d_B(\pi_1,\pi_2) = |A(\pi_1) \setminus A(\pi_2)|, \ d_B(\sigma_1,\sigma_2) = |A(\sigma_1) \setminus A(\sigma_2)|$

- s_1 is **Jump point** of $\sigma_1 = E(\pi_1, s_1)$ with respect to $\sigma_2 = E(\pi_2, s_2)$ if (suppose $\pi_{1,k_1} = s_1$ and $\pi_{2,k_2} = s_2$) Case 1 $k_1 = N$ or $k_2 = N$: Case 2 $k_1, k_2 < N$, and $\pi_{1,k_1+1} \neq \pi_{2,k_2+1}$. • $d_B(E(\pi_1, s_1), E(\pi_2, s_2)) > d_B(\pi_1, \pi_2)$ iff s_1 is a jump point (Lemma 9) • $d_B(\pi_1, \pi_2) = |A(\pi_1) \setminus A(\pi_2)|, d_B(\sigma_1, \sigma_2) = |A(\sigma_1) \setminus A(\sigma_2)|$

 - If s_1 is a jump point

- s₁ is Jump point of σ₁ = E(π₁, s₁) with respsect to σ₂ = E(π₂, s₂) if (suppose π_{1,k1} = s₁ and π_{2,k2} = s₂) Case 1 k₁ = N or k₂ = N; Case 2 k₁, k₂ < N, and π_{1,k1+1} ≠ π_{2,k2+1}.
 d_B(E(π₁, s₁), E(π₂, s₂)) > d_B(π₁, π₂) iff s₁ is a jump point (Lemma 9)
 d_B(π₁, π₂) = |A(π₁) \ A(π₂)|, d_B(σ₁, σ₂) = |A(σ₁) \ A(σ₂)|
 - If s₁ is a jump point

Case 1 $A(\sigma_1) \setminus A(\sigma_2) = A(\pi_1) \setminus A(\pi_2) \cup \{(s_1, N)\};$

- s₁ is Jump point of σ₁ = E(π₁, s₁) with respsect to σ₂ = E(π₂, s₂) if (suppose π_{1,k1} = s₁ and π_{2,k2} = s₂) Case 1 k₁ = N or k₂ = N; Case 2 k₁, k₂ < N, and π_{1,k1+1} ≠ π_{2,k2+1}.
 d_B(E(π₁, s₁), E(π₂, s₂)) > d_B(π₁, π₂) iff s₁ is a jump point (Lemma 9)
 d_B(π₁, π₂) = |A(π₁) \ A(π₂)|, d_B(σ₁, σ₂) = |A(σ₁) \ A(σ₂)|
 - If s₁ is a jump point

Case 1
$$A(\sigma_1) \setminus A(\sigma_2) = A(\pi_1) \setminus A(\pi_2) \cup \{(s_1, N)\};$$

Case 2 $((A(\pi_1) \setminus A(\pi_2)) \setminus \{(s_1, \pi_{1,k_1+1})\}) \cup \{(s_1, N+1), (N+1, \pi_{1,k_1+1})\} \subset A(\sigma_1) \setminus A(\sigma_2)$

- s_1 is **Jump point** of $\sigma_1 = E(\pi_1, s_1)$ with respect to $\sigma_2 = E(\pi_2, s_2)$ if (suppose $\pi_{1,k_1} = s_1$ and $\pi_{2,k_2} = s_2$) Case 1 $k_1 = N$ or $k_2 = N$; Case 2 $k_1, k_2 < N$, and $\pi_{1,k_1+1} \neq \pi_{2,k_2+1}$. • $d_B(E(\pi_1, s_1), E(\pi_2, s_2)) > d_B(\pi_1, \pi_2)$ iff s_1 is a jump point (Lemma 9)
 - $d_B(\pi_1, \pi_2) = |A(\pi_1) \setminus A(\pi_2)|, \ d_B(\sigma_1, \sigma_2) = |A(\sigma_1) \setminus A(\sigma_2)|$
 - If s₁ is a jump point

$$\begin{array}{l} \mathsf{Case 1} \quad \mathsf{A}(\sigma_1) \setminus \mathsf{A}(\sigma_2) = \mathsf{A}(\pi_1) \setminus \mathsf{A}(\pi_2) \cup \{(\mathsf{s}_1, \mathsf{N})\}; \\ \mathsf{Case 2} \quad ((\mathsf{A}(\pi_1) \setminus \mathsf{A}(\pi_2)) \setminus \{(\mathsf{s}_1, \pi_{1,k_1+1})\}) \cup \{(\mathsf{s}_1, \mathsf{N}+1), (\mathsf{N}+1, \pi_{1,k_1+1})\} \subset \mathsf{A}(\sigma_1) \setminus \mathsf{A}(\sigma_2) \\ \implies |\mathsf{A}(\sigma_1) \setminus \mathsf{A}(\sigma_2)| \ge |\mathsf{A}(\pi_1) \setminus \mathsf{A}(\pi_2)| + 1 \end{array}$$

- s₁ is Jump point of σ₁ = E(π₁, s₁) with respsect to σ₂ = E(π₂, s₂) if (suppose π_{1,k1} = s₁ and π_{2,k2} = s₂)
 Case 1 k₁ = N or k₂ = N;
 Case 2 k₁, k₂ < N, and π_{1,k1+1} ≠ π_{2,k2+1}.
 d_B(E(π₁, s₁), E(π₂, s₂)) > d_B(π₁, π₂) iff s₁ is a jump point (Lemma 9)
 - $d_B(\pi_1, \pi_2) = |A(\pi_1) \setminus A(\pi_2)|, \ d_B(\sigma_1, \sigma_2) = |A(\sigma_1) \setminus A(\sigma_2)|$
 - If s₁ is a jump point

$$\begin{array}{l} \mathsf{Case 1} \quad \mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2) = \mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2) \cup \{(s_1, N)\};\\ \mathsf{Case 2} \quad ((\mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2)) \setminus \{(s_1, \pi_{1,k_1+1})\}) \cup \{(s_1, N+1), (N+1, \pi_{1,k_1+1})\} \subset \mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2) \\ \implies |\mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2)| \geq |\mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2)| + 1 \end{array}$$

• If s₁ is not a jump point

- s₁ is Jump point of σ₁ = E(π₁, s₁) with respsect to σ₂ = E(π₂, s₂) if (suppose π_{1,k1} = s₁ and π_{2,k2} = s₂)
 Case 1 k₁ = N or k₂ = N;
 Case 2 k₁, k₂ < N, and π_{1,k1+1} ≠ π_{2,k2+1}.
 d_B(E(π₁, s₁), E(π₂, s₂)) > d_B(π₁, π₂) iff s₁ is a jump point (Lemma 9)
 - $d_B(\pi_1, \pi_2) = |A(\pi_1) \setminus A(\pi_2)|, \ d_B(\sigma_1, \sigma_2) = |A(\sigma_1) \setminus A(\sigma_2)|$
 - If s₁ is a jump point

$$\begin{array}{l} \mathsf{Case 1} \quad \mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2) = \mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2) \cup \{(s_1, N)\}; \\ \mathsf{Case 2} \quad ((\mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2)) \setminus \{(s_1, \pi_{1,k_1+1})\}) \cup \{(s_1, N+1), (N+1, \pi_{1,k_1+1})\} \subset \mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2) \\ \implies |\mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2)| \geq |\mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2)| + 1 \end{array}$$

• If s₁ is not a jump point

$$A(\sigma_1) \setminus A(\sigma_2) = ((A(\pi_1) \setminus A(\pi_2)) \setminus \{(s_1, \pi_{1,k_1+1})\}) \cup \{(s_1, N+1)\}$$

- s₁ is Jump point of σ₁ = E(π₁, s₁) with respsect to σ₂ = E(π₂, s₂) if (suppose π_{1,k1} = s₁ and π_{2,k2} = s₂) Case 1 k₁ = N or k₂ = N; Case 2 k₁, k₂ < N, and π_{1,k1+1} ≠ π_{2,k2+1}.
 d_B(E(π₁, s₁), E(π₂, s₂)) > d_B(π₁, π₂) iff s₁ is a jump point (Lemma 9)
 - $d_B(\pi_1, \pi_2) = |A(\pi_1) \setminus A(\pi_2)|, \ d_B(\sigma_1, \sigma_2) = |A(\sigma_1) \setminus A(\sigma_2)|$
 - If s₁ is a jump point

$$\begin{array}{l} \mathsf{Case 1} \quad \mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2) = \mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2) \cup \{(s_1, N)\};\\ \mathsf{Case 2} \quad ((\mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2)) \setminus \{(s_1, \pi_{1,k_1+1})\}) \cup \{(s_1, N+1), (N+1, \pi_{1,k_1+1})\} \subset \mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2)\\ \implies |\mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2)| \geq |\mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2)| + 1 \end{array}$$

• If s₁ is not a jump point

$$\begin{array}{l} \mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2) = ((\mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2)) \setminus \{(s_1, \pi_{1,k_1+1})\}) \cup \{(s_1, N+1)\} \\ \Longrightarrow \ |\mathcal{A}(\sigma_1) \setminus \mathcal{A}(\sigma_2)| = |\mathcal{A}(\pi_1) \setminus \mathcal{A}(\pi_2)| \end{array}$$

- s_1 is **Jump point** of $\sigma_1 = E(\pi_1, s_1)$ with respect to $\sigma_2 = E(\pi_2, s_2)$ if (suppose $\pi_{1,k_1} = s_1$ and $\pi_{2,k_2} = s_2$) Case 1 $k_1 = N$ or $k_2 = N$; Case 2 $k_1, k_2 < N$, and $\pi_{1,k_1+1} \neq \pi_{2,k_2+1}$.
- $d_B(E(\pi_1, s_1), E(\pi_2, s_2)) > d_B(\pi_1, \pi_2)$ iff s_1 is a jump point (Lemma 9)
- *m* is a **Jump index** of $E(\pi_1, S_1)$ and $E(\pi_2, S_2)$ if s_1 is a jump point of $E(E(\pi_1, (s_{1,1}, s_{1,2}, \dots, s_{1,m-1})), s_{1,m})$ with respect to $E(E(\pi_2, (s_{2,1}, s_{2,2}, \dots, s_{2,m-1})), s_{2,m})$

- s₁ is Jump point of σ₁ = E(π₁, s₁) with respsect to σ₂ = E(π₂, s₂) if (suppose π_{1,k1} = s₁ and π_{2,k2} = s₂) Case 1 k₁ = N or k₂ = N; Case 2 k₁, k₂ < N, and π_{1,k1+1} ≠ π_{2,k2+1}.
 d_B(E(π₁, s₁), E(π₂, s₂)) > d_B(π₁, π₂) iff s₁ is a jump point (Lemma 9)
- *m* is a **Jump index** of $E(\pi_1, S_1)$ and $E(\pi_2, S_2)$ if s_1 is a jump point of $E(E(\pi_1, (s_{1,1}, s_{1,2}, \cdots, s_{1,m-1})), s_{1,m})$ with respect to $E(E(\pi_2, (s_{2,1}, s_{2,2}, \cdots, s_{2,m-1})), s_{2,m})$

Note: d_B strictly increases when inserting N + m for those jump points m

- s₁ is Jump point of σ₁ = E(π₁, s₁) with respsect to σ₂ = E(π₂, s₂) if (suppose π_{1,k1} = s₁ and π_{2,k2} = s₂) Case 1 k₁ = N or k₂ = N; Case 2 k₁, k₂ < N, and π_{1,k1+1} ≠ π_{2,k2+1}.
 d_B(E(π₁, s₁), E(π₂, s₂)) > d_B(π₁, π₂) iff s₁ is a jump point (Lemma 9)
- *m* is a **Jump index** of $E(\pi_1, S_1)$ and $E(\pi_2, S_2)$ if s_1 is a jump point of $E(E(\pi_1, (s_{1,1}, s_{1,2}, \cdots, s_{1,m-1})), s_{1,m})$ with respect to $E(E(\pi_2, (s_{2,1}, s_{2,2}, \cdots, s_{2,m-1})), s_{2,m})$ Note: d_B strictly increases when inserting N + m for those jump

points *m*

• Jump set $F(\pi_1, \pi_2, S_1, S_2)$: the set of all jump indices of $E(\pi_1, S_1)$ and $E(\pi_2, S_2)$

- s_1 is **Jump point** of $\sigma_1 = E(\pi_1, s_1)$ with respect to $\sigma_2 = E(\pi_2, s_2)$ if (suppose $\pi_{1,k_1} = s_1$ and $\pi_{2,k_2} = s_2$) Case 1 $k_1 = N$ or $k_2 = N$; Case 2 $k_1, k_2 < N$, and $\pi_{1,k_1+1} \neq \pi_{2,k_2+1}$.
- $d_B(E(\pi_1, s_1), E(\pi_2, s_2)) > d_B(\pi_1, \pi_2)$ iff s_1 is a jump point (Lemma 9)
- *m* is a **Jump index** of $E(\pi_1, S_1)$ and $E(\pi_2, S_2)$ if s_1 is a jump point of $E(E(\pi_1, (s_{1,1}, s_{1,2}, \dots, s_{1,m-1})), s_{1,m})$ with respect to $E(E(\pi_2, (s_{2,1}, s_{2,2}, \dots, s_{2,m-1})), s_{2,m})$

Note: d_B strictly increases when inserting N + m for those jump points m

• Jump set $F(\pi_1, \pi_2, S_1, S_2)$: the set of all jump indices of $E(\pi_1, S_1)$ and $E(\pi_2, S_2)$

Note: d_B strictly increases when inserting N + m for all $m \in F(\pi_1, \pi_2, S_1, S_2)$

- s_1 is **Jump point** of $\sigma_1 = E(\pi_1, s_1)$ with respect to $\sigma_2 = E(\pi_2, s_2)$ if (suppose $\pi_{1,k_1} = s_1$ and $\pi_{2,k_2} = s_2$) Case 1 $k_1 = N$ or $k_2 = N$; Case 2 $k_1, k_2 < N$, and $\pi_{1,k_1+1} \neq \pi_{2,k_2+1}$.
- $d_B(E(\pi_1, s_1), E(\pi_2, s_2)) > d_B(\pi_1, \pi_2)$ iff s_1 is a jump point (Lemma 9)
- *m* is a **Jump index** of $E(\pi_1, S_1)$ and $E(\pi_2, S_2)$ if s_1 is a jump point of $E(E(\pi_1, (s_{1,1}, s_{1,2}, \dots, s_{1,m-1})), s_{1,m})$ with respect to $E(E(\pi_2, (s_{2,1}, s_{2,2}, \dots, s_{2,m-1})), s_{2,m})$

Note: d_B strictly increases when inserting N + m for those jump points m

• Jump set $F(\pi_1,\pi_2,S_1,S_2)$: the set of all jump indices of $E(\pi_1,S_1)$ and $E(\pi_2,S_2)$

Note: d_B strictly increases when inserting N + m for all

 $m \in F(\pi_1, \pi_2, S_1, S_2)$

 $\implies d_B(\sigma_1, \sigma_2) \ge d_B(\pi_1, \pi_2) + |F(\pi_1, \pi_2, S_1, S_2)|$ (Remark 5)

• Hamming set of \mathbf{v}_1 with respect to \mathbf{v}_2 , \mathbf{v}_1 , $\mathbf{v}_2 \in \mathbb{N}^k$, $k \in \mathbb{N}$: $H(\mathbf{v}_1, \mathbf{v}_2) \triangleq \{ \mathbf{v}_{1,m} | \mathbf{v}_{1,m} \neq \mathbf{v}_{2,m}, m \in [k] \}$

• Hamming set of \mathbf{v}_1 with respect to \mathbf{v}_2 , \mathbf{v}_1 , $\mathbf{v}_2 \in \mathbb{N}^k$, $k \in \mathbb{N}$: $H(\mathbf{v}_1, \mathbf{v}_2) \triangleq \{\mathbf{v}_{1,m} | \mathbf{v}_{1,m} \neq \mathbf{v}_{2,m}, m \in [k]\}$ Note: Cardinality of Hamming sets induces a metric, i.e., $|H(\mathbf{v}_1, \mathbf{v}_3)| \leq |H(\mathbf{v}_1, \mathbf{v}_2)| + |H(\mathbf{v}_2, \mathbf{v}_3)|$

- Hamming set of \mathbf{v}_1 with respect to \mathbf{v}_2 , \mathbf{v}_1 , $\mathbf{v}_2 \in \mathbb{N}^k$, $k \in \mathbb{N}$: $H(\mathbf{v}_1, \mathbf{v}_2) \triangleq \{\mathbf{v}_{1,m} | \mathbf{v}_{1,m} \neq \mathbf{v}_{2,m}, m \in [k]\}$ Note: Cardinality of Hamming sets induces a metric, i.e., $|H(\mathbf{v}_1, \mathbf{v}_3)| \leq |H(\mathbf{v}_1, \mathbf{v}_2)| + |H(\mathbf{v}_2, \mathbf{v}_3)|$
- $d_B(E(\pi_1, S_1), E(\pi_2, S_2)) \ge |H(S_1, S_2)|$ (Lemma 10)

• Hamming set of \mathbf{v}_1 with respect to \mathbf{v}_2 , \mathbf{v}_1 , $\mathbf{v}_2 \in \mathbb{N}^k$, $k \in \mathbb{N}$: $H(\mathbf{v}_1, \mathbf{v}_2) \triangleq \{v_{1,m} | v_{1,m} \neq v_{2,m}, m \in [k]\}$ Note: Cardinality of Hamming sets induces a metric, i.e., $|H(\mathbf{v}_1, \mathbf{v}_3)| \leq |H(\mathbf{v}_1, \mathbf{v}_2)| + |H(\mathbf{v}_2, \mathbf{v}_3)|$ • $d_B(E(\pi_1, S_1), E(\pi_2, S_2)) \geq |H(S_1, S_2)|$ (Lemma 10) Proof $\forall v \in H(S_1, S_2)$

• Hamming set of \mathbf{v}_1 with respect to \mathbf{v}_2 , \mathbf{v}_1 , $\mathbf{v}_2 \in \mathbb{N}^k$, $k \in \mathbb{N}$: $H(\mathbf{v}_1, \mathbf{v}_2) \triangleq \{\mathbf{v}_{1,m} | \mathbf{v}_{1,m} \neq \mathbf{v}_{2,m}, m \in [k]\}$ Note: Cardinality of Hamming sets induces a metric, i.e., $|H(\mathbf{v}_1, \mathbf{v}_3)| \leq |H(\mathbf{v}_1, \mathbf{v}_2)| + |H(\mathbf{v}_2, \mathbf{v}_3)|$ • $d_B(E(\pi_1, S_1), E(\pi_2, S_2)) \geq |H(S_1, S_2)|$ (Lemma 10) Proof $\forall \mathbf{v} \in H(S_1, S_2)$ Case 1 $\mathbf{v} \in F(\pi_1, \pi_2, S_1, S_2)$ $|H(S_1, S_2) \cap F(\pi_1, \pi_2, S_1, S_2)| \leq |F(\pi_1, \pi_2, S_1, S_2)|$

• Hamming set of \mathbf{v}_1 with respect to \mathbf{v}_2 , \mathbf{v}_1 , $\mathbf{v}_2 \in \mathbb{N}^k$, $k \in \mathbb{N}$: $H(\mathbf{v}_1,\mathbf{v}_2) \triangleq \{\mathbf{v}_{1,m} | \mathbf{v}_{1,m} \neq \mathbf{v}_{2,m}, m \in [k]\}$ Note: Cardinality of Hamming sets induces a metric, i.e., $|H(\mathbf{v}_1,\mathbf{v}_3)| < |H(\mathbf{v}_1,\mathbf{v}_2)| + |H(\mathbf{v}_2,\mathbf{v}_3)|$ • $d_B(E(\pi_1, S_1), E(\pi_2, S_2)) \ge |H(S_1, S_2)|$ (Lemma 10) **Proof** $\forall v \in H(S_1, S_2)$ Case 1 $v \in F(\pi_1, \pi_2, S_1, S_2)$ $|H(S_1, S_2) \cap F(\pi_1, \pi_2, S_1, S_2)| < |F(\pi_1, \pi_2, S_1, S_2)|$ Case 2 $v \notin F(\pi_1, \pi_2, S_1, S_2)$ $\implies \exists j \in [N] \text{ s.t. } (v, j) \in A(\pi_1) \setminus A(\pi_2)$ $\implies |H(S_1, S_2) \setminus F(\pi_1, \pi_2, S_1, S_2)| < A(\pi_1) \setminus A(\pi_2) = d_B(\pi_1, \pi_2)$

• Hamming set of \mathbf{v}_1 with respect to \mathbf{v}_2 , \mathbf{v}_1 , $\mathbf{v}_2 \in \mathbb{N}^k$, $k \in \mathbb{N}$: $H(\mathbf{v}_1,\mathbf{v}_2) \triangleq \{\mathbf{v}_{1,m} | \mathbf{v}_{1,m} \neq \mathbf{v}_{2,m}, m \in [k]\}$ Note: Cardinality of Hamming sets induces a metric, i.e., $|H(\mathbf{v}_1,\mathbf{v}_3)| < |H(\mathbf{v}_1,\mathbf{v}_2)| + |H(\mathbf{v}_2,\mathbf{v}_3)|$ • $d_B(E(\pi_1, S_1), E(\pi_2, S_2)) \ge |H(S_1, S_2)|$ (Lemma 10) **Proof** $\forall v \in H(S_1, S_2)$ Case 1 $v \in F(\pi_1, \pi_2, S_1, S_2)$ $|H(S_1, S_2) \cap F(\pi_1, \pi_2, S_1, S_2)| < |F(\pi_1, \pi_2, S_1, S_2)|$ Case 2 $v \notin F(\pi_1, \pi_2, S_1, S_2)$ $\implies \exists j \in [N] \text{ s.t. } (v, j) \in A(\pi_1) \setminus A(\pi_2)$ $\implies |H(S_1, S_2) \setminus F(\pi_1, \pi_2, S_1, S_2)| < A(\pi_1) \setminus A(\pi_2) = d_B(\pi_1, \pi_2)$ \implies $d_B(\sigma_1, \sigma_2) > d_B(\pi_1, \pi_2) + |F(\pi_1, \pi_2, S_1, S_2)| > |H(S_1, S_2)|$

• Hamming set of \mathbf{v}_1 with respect to \mathbf{v}_2 , \mathbf{v}_1 , $\mathbf{v}_2 \in \mathbb{N}^k$, $k \in \mathbb{N}$: $H(\mathbf{v}_1,\mathbf{v}_2) \triangleq \{\mathbf{v}_{1,m} | \mathbf{v}_{1,m} \neq \mathbf{v}_{2,m}, m \in [k]\}$ Note: Cardinality of Hamming sets induces a metric, i.e., $|H(\mathbf{v}_1,\mathbf{v}_3)| < |H(\mathbf{v}_1,\mathbf{v}_2)| + |H(\mathbf{v}_2,\mathbf{v}_3)|$ • $d_B(E(\pi_1, S_1), E(\pi_2, S_2)) \ge |H(S_1, S_2)|$ (Lemma 10) **Proof** $\forall v \in H(S_1, S_2)$ Case 1 $v \in F(\pi_1, \pi_2, S_1, S_2)$ $|H(S_1, S_2) \cap F(\pi_1, \pi_2, S_1, S_2)| < |F(\pi_1, \pi_2, S_1, S_2)|$ Case 2 $v \notin F(\pi_1, \pi_2, S_1, S_2)$ $\implies \exists j \in [N] \text{ s.t. } (v, j) \in A(\pi_1) \setminus A(\pi_2)$ $\implies |H(S_1, S_2) \setminus F(\pi_1, \pi_2, S_1, S_2)| < A(\pi_1) \setminus A(\pi_2) = d_B(\pi_1, \pi_2)$ \implies $d_B(\sigma_1, \sigma_2) > d_B(\pi_1, \pi_2) + |F(\pi_1, \pi_2, S_1, S_2)| > |H(S_1, S_2)|$ • $\mathcal{A}(N, K, t) \subset [N]^{K}$ is called an **t-Auxiliary Set** if: $\forall \mathbf{c}_1 \neq \mathbf{c}_2 \in \mathcal{A}(N, K, t), |\mathcal{H}(\mathbf{c}_1, \mathbf{c}_2)| \geq 2t + 1$

Step 1 Given a t-auxiliary set $\mathcal{A}(\textit{N},\textit{K},t)$ with cardinality that is no less than q^{4t-1}

- Step 1 Given a t-auxiliary set $\mathcal{A}(\textit{N},\textit{K},t)$ with cardinality that is no less than q^{4t-1}
- Step 2 Find an injection $\varphi: q^{4t-1} \rightarrow \mathcal{A}(N, K, t)$, where q is a prime number such that $N^2 N < q < 2(N^2 N)$

- Step 1 Given a t-auxiliary set $\mathcal{A}(\textit{N},\textit{K},t)$ with cardinality that is no less than q^{4t-1}
- Step 2 Find an injection $\varphi: q^{4t-1} \rightarrow \mathcal{A}(N, K, t)$, where q is a prime number such that $N^2 N < q < 2(N^2 N)$

Step 3 Compute the set $\mathcal{C}_{\mathcal{B}}^{sys}(\mathcal{N},\mathcal{K},t) = \{\mathcal{E}(\pi,\varphi\circ\alpha(\pi))|\pi\in\mathbb{S}_{\mathcal{N}}\}$

- Step 1 Given a t-auxiliary set $\mathcal{A}(\textit{N},\textit{K},t)$ with cardinality that is no less than q^{4t-1}
- Step 2 Find an injection $\varphi: q^{4t-1} \rightarrow \mathcal{A}(N, K, t)$, where q is a prime number such that $N^2 N < q < 2(N^2 N)$

Step 3 Compute the set $\mathcal{C}_{\mathcal{B}}^{sys}(\mathcal{N},\mathcal{K},t) = \{\mathcal{E}(\pi,\varphi\circ\alpha(\pi))|\pi\in\mathbb{S}_{\mathcal{N}}\}$

Theorem 4 $C_B^{sys}(N, K, t)$ is a systematic *t*-block permutation code

- Step 1 Given a t-auxiliary set $\mathcal{A}(\textit{N},\textit{K},t)$ with cardinality that is no less than q^{4t-1}
- Step 2 Find an injection $\varphi: q^{4t-1} \rightarrow \mathcal{A}(N, K, t)$, where q is a prime number such that $N^2 N < q < 2(N^2 N)$

Step 3 Compute the set $\mathcal{C}_{\mathcal{B}}^{sys}(\mathcal{N},\mathcal{K},t) = \{\mathcal{E}(\pi,\varphi\circ\alpha(\pi))|\pi\in\mathbb{S}_{\mathcal{N}}\}$

Theorem 4 $C_B^{sys}(N, K, t)$ is a systematic *t*-block permutation code For any $\pi_1 \neq \pi_2$, Let $\sigma_1 = E(\pi_1, \varphi(\alpha_1)), \sigma_2 = E(\pi_2, \varphi(\alpha_2))$

- Step 1 Given a t-auxiliary set $\mathcal{A}(\textit{N},\textit{K},t)$ with cardinality that is no less than q^{4t-1}
- Step 2 Find an injection $\varphi: q^{4t-1} \rightarrow \mathcal{A}(N, K, t)$, where q is a prime number such that $N^2 N < q < 2(N^2 N)$

Step 3 Compute the set $\mathcal{C}_{\mathcal{B}}^{sys}(\mathcal{N},\mathcal{K},t) = \{\mathcal{E}(\pi,\varphi\circ\alpha(\pi))|\pi\in\mathbb{S}_{\mathcal{N}}\}$

Theorem 4 $C_B^{\text{sys}}(N, K, t)$ is a systematic *t*-block permutation code For any $\pi_1 \neq \pi_2$, Let $\sigma_1 = E(\pi_1, \varphi(\alpha_1)), \sigma_2 = E(\pi_2, \varphi(\alpha_2))$ Case 1 $\alpha(\pi_1) = \alpha(\pi_2) \Longrightarrow d_B(\sigma_1, \sigma_2) \ge d_B(\pi_1, \pi_2) \ge 2t+1$

- Step 1 Given a t-auxiliary set $\mathcal{A}(\textit{N},\textit{K},t)$ with cardinality that is no less than q^{4t-1}
- Step 2 Find an injection $\varphi: q^{4t-1} \rightarrow \mathcal{A}(N, K, t)$, where q is a prime number such that $N^2 N < q < 2(N^2 N)$

Step 3 Compute the set $\mathcal{C}_{\mathcal{B}}^{sys}(\mathcal{N},\mathcal{K},t) = \{\mathcal{E}(\pi,\varphi\circ\alpha(\pi))|\pi\in\mathbb{S}_{\mathcal{N}}\}$

Theorem 4 $C_B^{\text{sys}}(N, K, t)$ is a systematic *t*-block permutation code For any $\pi_1 \neq \pi_2$, Let $\sigma_1 = E(\pi_1, \varphi(\alpha_1)), \sigma_2 = E(\pi_2, \varphi(\alpha_2))$ Case 1 $\alpha(\pi_1) = \alpha(\pi_2) \Longrightarrow d_B(\sigma_1, \sigma_2) \ge d_B(\pi_1, \pi_2) \ge 2t+1$ Case 2 $\alpha(\pi_1) \neq \alpha(\pi_2) \Longrightarrow S_1 = \varphi(\alpha_1) \neq S_2 = \varphi(\alpha_2)) \Longrightarrow d_B(\sigma_1, \sigma_2) \ge H(S_1, S_2) \ge 2t+1$

- Step 1 Given a t-auxiliary set $\mathcal{A}(\textit{N},\textit{K},t)$ with cardinality that is no less than q^{4t-1}
- Step 2 Find an injection $\varphi: q^{4t-1} \rightarrow \mathcal{A}(N, K, t)$, where q is a prime number such that $N^2 N < q < 2(N^2 N)$

Step 3 Compute the set $\mathcal{C}_{\mathcal{B}}^{sys}(\mathcal{N},\mathcal{K},t) = \{\mathcal{E}(\pi,\varphi\circ\alpha(\pi))|\pi\in\mathbb{S}_{\mathcal{N}}\}$

Theorem 4 $C_B^{\text{sys}}(N, K, t)$ is a systematic *t*-block permutation code For any $\pi_1 \neq \pi_2$, Let $\sigma_1 = E(\pi_1, \varphi(\alpha_1)), \sigma_2 = E(\pi_2, \varphi(\alpha_2))$ Case 1 $\alpha(\pi_1) = \alpha(\pi_2) \Longrightarrow d_B(\sigma_1, \sigma_2) \ge d_B(\pi_1, \pi_2) \ge 2t+1$ Case 2 $\alpha(\pi_1) \neq \alpha(\pi_2) \Longrightarrow S_1 = \varphi(\alpha_1) \neq S_2 = \varphi(\alpha_2)) \Longrightarrow d_B(\sigma_1, \sigma_2) \ge H(S_1, S_2) \ge 2t+1$ $\Longrightarrow d_B(\sigma_1, \sigma_2) \ge 2t+1$

- Step 1 Given a t-auxiliary set $\mathcal{A}(\textit{N},\textit{K},t)$ with cardinality that is no less than q^{4t-1}
- Step 2 Find an injection $\varphi: q^{4t-1} \rightarrow \mathcal{A}(N, K, t)$, where q is a prime number such that $N^2 N < q < 2(N^2 N)$

Step 3 Compute the set $\mathcal{C}_{\mathcal{B}}^{sys}(\mathcal{N},\mathcal{K},t) = \{\mathcal{E}(\pi,\varphi\circ\alpha(\pi))|\pi\in\mathbb{S}_{\mathcal{N}}\}$

Theorem 4 $C_B^{\text{sys}}(N, K, t)$ is a systematic *t*-block permutation code For any $\pi_1 \neq \pi_2$, Let $\sigma_1 = E(\pi_1, \varphi(\alpha_1)), \sigma_2 = E(\pi_2, \varphi(\alpha_2))$ Case 1 $\alpha(\pi_1) = \alpha(\pi_2) \Longrightarrow d_B(\sigma_1, \sigma_2) \ge d_B(\pi_1, \pi_2) \ge 2t+1$ Case 2 $\alpha(\pi_1) \neq \alpha(\pi_2) \Longrightarrow S_1 = \varphi(\alpha_1) \neq S_2 = \varphi(\alpha_2)) \Longrightarrow d_B(\sigma_1, \sigma_2) \ge H(S_1, S_2) \ge 2t+1$ $\Longrightarrow d_B(\sigma_1, \sigma_2) \ge 2t+1$

Note Only need to construct *t*-auxiliary set $\mathcal{A}(N, K, t)$ with cardinality that is no less than q^{4t-1} (will introduce later)

Constructions

Construction: Decoding

Channel Send sents $\sigma = E(\pi, S = \varphi \circ \alpha(\pi))$ and the receiver receives σ' , $d_B(\sigma, \sigma') \le t$

Channel Send sents $\sigma = E(\pi, S = \varphi \circ \alpha(\pi))$ and the receiver receives σ' , $d_B(\sigma, \sigma') \leq t$

Step 1 Find $\pi' \in \mathbb{S}_N, S' \in [N]^K$ such that $\sigma' = E(\pi', S')$
Constructions

Construction: Decoding

Channel Send sents $\sigma = E(\pi, S = \varphi \circ \alpha(\pi))$ and the receiver receives σ' , $d_B(\sigma, \sigma') < t$ Step 1 Find $\pi' \in \mathbb{S}_N, S' \in [N]^K$ such that $\sigma' = E(\pi', S')$ Lemma 11 $H(S, S') \leq t$

Channel Send sents $\sigma = E(\pi, S = \varphi \circ \alpha(\pi))$ and the receiver receives σ' , $d_B(\sigma, \sigma') \leq t$ Step 1 Find $\pi' \in \mathbb{S}_N, S' \in [N]^K$ such that $\sigma' = E(\pi', S')$ **Lemma 11** $H(S, S') \leq t$

 \implies S' can be decoded from S':

Channel Send sents $\sigma = E(\pi, S = \varphi \circ \alpha(\pi))$ and the receiver receives σ' , $d_B(\sigma, \sigma') \leq t$ Step 1 Find $\pi' \in \mathbb{S}_N, S' \in [N]^K$ such that $\sigma' = E(\pi', S')$ **Lemma 11** $H(S, S') \leq t$ $\implies S'$ can be decoded from S':

1 Cardinality of the Hamming set of elements from *t*-auxiliary set is at least 2t + 1

Channel Send sents $\sigma = E(\pi, S = \varphi \circ \alpha(\pi))$ and the receiver receives σ' , $d_B(\sigma, \sigma') \leq t$ Step 1 Find $\pi' \in \mathbb{S}_N, S' \in [N]^K$ such that $\sigma' = E(\pi', S')$ **Lemma 11** $H(S, S') \leq t$ $\implies S'$ can be decoded from S':

- \Rightarrow S' can be decoded from S:
 - 1 Cardinality of the Hamming set of elements from *t*-auxiliary set is at least 2t + 1
 - 2 Cardinality of Hamming induces a metric

Channel Send sents $\sigma = E(\pi, S = \varphi \circ \alpha(\pi))$ and the receiver receives σ' , $d_B(\sigma, \sigma') \leq t$ **Step 1** Find $\pi' \in \mathbb{S}_N, S' \in [N]^K$ such that $\sigma' = E(\pi', S')$ **Lemma 11** $H(S, S') \leq t$ $\implies S'$ can be decoded from S': 1 Cardinality of the Hamming set of elements from t-auxiliary set is at least 2t + 1

2 Cardinality of Hamming induces a metric

Step 2 Decode *S* from *S'*

 $\begin{array}{l} \textbf{Channel Send sents } \sigma = \textit{E}(\pi,\textit{S} = \varphi \circ \alpha(\pi)) \text{ and the receiver receives } \sigma', \\ \textit{d}_{\textit{B}}(\sigma,\sigma') \leq t \\ \textbf{Step 1 Find } \pi' \in \mathbb{S}_{\textit{N}}, \textit{S}' \in [\textit{N}]^{\textit{K}} \text{ such that } \sigma' = \textit{E}(\pi',\textit{S}') \\ \textbf{Lemma 11 } \textit{H}(\textit{S},\textit{S}') \leq t \\ \implies \textit{S}' \text{ can be decoded from } \textit{S}': \\ 1 \text{ Cardinality of the Hamming set of elements from} \\ \textit{t-auxiliary set is at least } 2t+1 \\ 2 \text{ Cardinality of Hamming induces a metric} \end{array}$

Step 2 Decode *S* from *S'*

Step 3 Compute parity check sum $\alpha(\pi) = \varphi^{-1}(S)$ from S

Channel Send sents $\sigma = E(\pi, S = \varphi \circ \alpha(\pi))$ and the receiver receives σ' , $d_B(\sigma, \sigma') < t$ Step 1 Find $\pi' \in \mathbb{S}_N, S' \in [N]^K$ such that $\sigma' = E(\pi', S')$ Lemma 11 $H(S, S') \leq t$ \implies S' can be decoded from S': 1 Cardinality of the Hamming set of elements from *t*-auxiliary set is at least 2t+12 Cardinality of Hamming induces a metric Step 2 Decode S from S' Step 3 Compute parity check sum $\alpha(\pi) = \varphi^{-1}(S)$ from S Step 4 $d_B(\pi, \pi') < d_B(\sigma, \sigma') < t$, decode π from π' and $\alpha(\pi)$ using Theorem 3

Constructions

Construction: *t*-Auxiliary Set

Lemma 14 For all $k, N \in \mathbb{N}^*$, k > 3, $N > k^2$, consider an arbitrary subset $Y \subset [k]$, where |Y| = M < k, $Y = \{i_1, i_2, \cdots, i_M\}$, then LCM $(N + i_1, N + i_2, \cdots, N + i_M) > N^{M - \frac{k}{2}}$

Constructions

Construction: *t*-Auxiliary Set

Lemma 14 For all $k, N \in \mathbb{N}^*$, k > 3, $N > k^2$, consider an arbitrary subset $Y \subset [k]$, where |Y| = M < k, $Y = \{i_1, i_2, \cdots, i_M\}$, then LCM $(N + i_1, N + i_2, \cdots, N + i_M) > N^{M - \frac{k}{2}}$ Construction For all $N, k, t \in \mathbb{N}^*$, $k \ge 28t$, $k < \lfloor \sqrt{N} - \frac{1}{2} \rfloor$,

 $\mathbf{x} = (x_1, x_2, \cdots, x_{4t-1}) \in [q]^{4t-1}$

Lemma 14 For all $k, N \in \mathbb{N}^*$, k > 3, $N > k^2$, consider an arbitrary subset $Y \subset [k]$, where |Y| = M < k, $Y = \{i_1, i_2, \cdots, i_M\}$, then LCM $(N + i_1, N + i_2, \cdots, N + i_M) > N^{M-\frac{k}{2}}$ Construction For all $N, k, t \in \mathbb{N}^*$, $k \ge 28t$, $k < \lfloor \sqrt{N} - \frac{1}{2} \rfloor$, $\mathbf{x} = (x_1, x_2, \cdots, x_{4t-1}) \in [q]^{4t-1}$ Step 1 Compute $\beta(\mathbf{x}) = (\beta_1, \beta_2, \cdots, \beta_k)$, where $\beta_i = \sum_{i=1}^{4t-1} x_i q^{i-1} \mod (N + i)$

Lemma 14 For all $k, N \in \mathbb{N}^*$, k > 3, $N > k^2$, consider an arbitrary subset $Y \subset [k]$, where |Y| = M < k, $Y = \{i_1, i_2, \cdots, i_M\}$, then LCM $(N + i_1, N + i_2, \cdots, N + i_M) > N^{M-\frac{k}{2}}$ Construction For all $N, k, t \in \mathbb{N}^*$, $k \ge 28t$, $k < \lfloor \sqrt{N} - \frac{1}{2} \rfloor$, $\mathbf{x} = (x_1, x_2, \cdots, x_{4t-1}) \in [q]^{4t-1}$ Step 1 Compute $\beta(\mathbf{x}) = (\beta_1, \beta_2, \cdots, \beta_k)$, where $\beta_i = \sum_{i=1}^{4t-1} x_i q^{i-1} \mod (N + i)$

Theorem 6 $\forall \mathbf{x}_1, \mathbf{x}_2 \in [q]^d$, $\mathbf{x}_1 \neq \mathbf{x}_2$, $d_H(\boldsymbol{\beta}(\mathbf{x}_1), \boldsymbol{\beta}(\mathbf{x}_2)) > 2t$

Lemma 14 For all $k, N \in \mathbb{N}^*$, k > 3, $N > k^2$, consider an arbitrary subset $Y \subset [k]$, where $|Y| = M < k, Y = \{i_1, i_2, \dots, i_M\}$, then LCM $(N + i_1, N + i_2, \cdots, N + i_M) > N^{M - \frac{k}{2}}$ **Construction** For all $N, k, t \in \mathbb{N}^*$, $k \ge 28t$, $k < |\sqrt{N} - \frac{1}{2}|$, $\mathbf{x} = (x_1, x_2, \cdots, x_{4t-1}) \in [\mathbf{q}]^{4t-1}$ Step 1 Compute $\beta(\mathbf{x}) = (\beta_1, \beta_2, \cdots, \beta_k)$, where $\beta_i = \sum_{i=1}^{4t-1} x_i q^{i-1} \mod (N+i)$ **Theorem 6** $\forall \mathbf{x}_1, \mathbf{x}_2 \in [q]^d, \mathbf{x}_1 \neq \mathbf{x}_2, d_H(\boldsymbol{\beta}(\mathbf{x}_1), \boldsymbol{\beta}(\mathbf{x}_2)) > 2t$ Step 2 Compute $\mathbf{c} = (c_1, c_2, \cdots, c_{2k})$, where $(c_{2i-1}, c_{2i}) = 1 + (i-1) \left| \frac{N}{k} \right| + (e_{2i-1}, e_{2i}),$ (e_{2i-1}, e_{2i}) is the $|\frac{N}{k}|$ -ary representation of β_i

Lemma 14	For all $k, N \in \mathbb{N}^*$, $k > 3$, $N > k^2$, consider an arbitrary subset
	$Y \subset [k]$, where $ Y = M < k$, $Y = \{i_1, i_2, \cdots, i_M\}$, then
	$\operatorname{LCM}(N+i_1, N+i_2, \cdots, N+i_M) > N^{M-\frac{k}{2}}$
Construction	For all $\textit{N},\textit{k},t\in\mathbb{N}^*$, $\textit{k}\geq 28t$, $\textit{k}<\lfloor\sqrt{\textit{N}}-rac{1}{2} floor$,
	$oldsymbol{x}=(x_1,x_2,\cdots,x_{4t-1})\in [oldsymbol{q}]^{4t-1}$
Step 1	Compute $oldsymbol{eta}({\pmb{x}})=(eta_1,eta_2,\cdots,eta_k)$, where
	$\beta_i = \sum_{i=1}^{4t-1} x_i q^{i-1} \mod (N+i)$
Theorem 6	$orall oldsymbol{x}_1,oldsymbol{x}_2\in \left[oldsymbol{q} ight]^d$, $oldsymbol{x}_1 eqoldsymbol{x}_2,oldsymbol{d}_{ extsf{H}}(oldsymbol{eta}(oldsymbol{x}_1),oldsymbol{eta}(oldsymbol{x}_2))>2t$
Step 2	Compute $\mathbf{c} = (c_1, c_2, \cdots, c_{2k})$, where
	$(c_{2i-1}, c_{2i}) = 1 + (i-1)\lfloor \frac{N}{k} \rfloor + (e_{2i-1}, e_{2i}),$
	(e_{2i-1}, e_{2i}) is the $\lfloor \frac{N}{k} \rfloor$ -ary representation of β_i
Theorem 7	$\mathcal{A}(\textit{\textit{N}},2\textit{\textit{k}},t) = \{\mathbf{c}(\mathbf{x}): \; \mathbf{x} \in [\textit{q}]^{4t-1}\}$ is a <i>t</i> -auxiliary set with
	cardinality q^{4t-1}

Lemma 14	For all $k, N \in \mathbb{N}^*$, $k > 3$, $N > k^2$, consider an arbitrary subset
	$Y \subset [k]$, where $ Y = M < k$, $Y = \{i_1, i_2, \cdots, i_M\}$, then
	LCM $(N + i_1, N + i_2, \cdots, N + i_M) > N^{M - \frac{k}{2}}$
Construction	For all $\textit{N},\textit{k},\textit{t} \in \mathbb{N}^*$, $\textit{k} \geq 28\textit{t},\textit{k} < \lfloor \sqrt{\textit{N}} - rac{1}{2} floor$,
	$\mathbf{x} = (x_1, x_2, \cdots, x_{4t-1}) \in [\mathbf{q}]^{4t-1}$
Step 1	Compute $oldsymbol{eta}({\pmb{x}})=(eta_1,eta_2,\cdots,eta_k)$, where
	$\beta_i = \sum_{i=1}^{4t-1} x_i q^{i-1} \mod (N+i)$
Theorem 6	$orall \mathbf{x}_1, \mathbf{x}_2 \in \left[oldsymbol{q} ight]^{oldsymbol{d}}, oldsymbol{x}_1 eq oldsymbol{x}_2, oldsymbol{d}_{oldsymbol{\mathcal{H}}}(oldsymbol{eta}(\mathbf{x}_1),oldsymbol{eta}(\mathbf{x}_2)) > 2t$
Step 2	Compute $\mathbf{c} = (c_1, c_2, \cdots, c_{2k})$, where
	$(c_{2i-1}, c_{2i}) = 1 + (i-1)\lfloor \frac{N}{k} \rfloor + (e_{2i-1}, e_{2i}),$
	(e_{2i-1}, e_{2i}) is the $\lfloor rac{N}{k} floor$ -ary representation of eta_i
Theorem 7	$\mathcal{A}(\textit{N},2\textit{k},t) = \{\mathbf{c}(\mathbf{x}): \ \mathbf{x} \in [\textit{q}]^{4t-1}\}$ is a <i>t</i> -auxiliary set with cardinality \textit{q}^{4t-1}
Lemma 16	Code constructed by Theorem 4 using $\mathcal{A}(N, 56t, t)$ is systematic and order-optimal

Conclusion

Outline

Background

- Objective
- 2 Theoretical Analysis
 - Distances of Interest
 - Order-Optimal Codes

3 Construction

- Encoding Schemes
- Decoding Schemes
- Rate Analysis

Systematic Codes

- General Ideas
- Constructions

5 Conclusion

Conclusion and Future Work

Conclusion

- Conclusion
 - We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric

- Conclusion
 - We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric
 - We provide a coding scheme of order-optimal codes

- Conclusion
 - We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric
 - We provide a coding scheme of order-optimal codes
 - We prove that our code is more rate efficient than the existing permutation codes based on interleaving

- Conclusion
 - We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric
 - We provide a coding scheme of order-optimal codes
 - We prove that our code is more rate efficient than the existing permutation codes based on interleaving
 - We extend our result by developing a construction of systematic permutation codes in this metric that is order-optimal

- Conclusion
 - We derive the lower and the upper bounds of the optimal rate of the permutation codes in the generalized Cayley metric
 - We provide a coding scheme of order-optimal codes
 - We prove that our code is more rate efficient than the existing permutation codes based on interleaving
 - We extend our result by developing a construction of systematic permutation codes in this metric that is order-optimal
- Future work
 - Binary codes that corrects generalized transposition error (has potential in DNA storage)

Thank you!